Wildfires, Global Climate Change, and Human Health

Rongbin Xu, M.B., B.S., Pei Yu, M.B., B.S., Michael J. Abramson, M.B., B.S., Ph.D., Fay H. Johnston, B.M., B.S., Ph.D., Jonathan M. Samet, M.D., Michelle L. Bell, Ph.D., Andy Haines, M.B., B.S., M.D., Kristie L. Ebi, Ph.D., M.P.H., Shanshan Li, M.D., Ph.D., and Yuming Guo, M.D., Ph.D.

The world has already observed many devastating effects of human-induced climate change. A vivid manifestation is the several large wildfires that have occurred recently — in some cases, fires of unprecedented scale and duration — including wildfires in Australia in 2019 to 2020, the Amazon rainforest in Brazil in 2019 and 2020, the western United States in 2018 and 2020, and British Columbia, Canada, in 2017 and 2018. Since August of this year, record-breaking wildfires have burned 2.7 million hectares (as of September 18, 2020) along the West Coast of the United States, killing more than 30 people and leaving tens of thousands homeless. Robust projections indicate that the risk of wildfires will continue to increase in most areas of the world as climate change worsens and that the fires will increase excess mortality and morbidity from burns, wildfire smoke, and mental health effects.

Substantial greenhouse-gas emissions and forest loss from wildfires are likely to accelerate climate change further and possibly lead to a reinforcing feedback loop. Climate change–related rainfall anomalies can intensify drought in tropical and subtropical areas. Climate change can increase the chances that each of these will be present.

Climate change–related rainfall anomalies can intensify drought in tropical and subtropical areas. Rainfall is becoming more concentrated in winter, making other seasons, especially summer, hotter and drier. An increase in the evaporation of moisture in soil during dry periods leads to an increase in flammable vegetation that can fuel wildfires, under the assumption that forest management is unchanged.

The global surface wind speed has increased substantially since 2010, after three decades of decrease. This shift is driven mainly by ocean–atmosphere oscillations, such as El Niño events, which might be related to climate change. Climate change is projected to enhance differences in temperature between the land and the sea, resulting in greater land–sea differences in air pressure, which boost wind power in tropical and southern subtropical areas. Strong winds provide more oxygen for wildfires and encourage their spread, potentially outstripping firefighting capability.

Increases in the frequency and intensity of heat waves under climate change provide more ignition sources for wildfires. Climate change also affects lightning strikes, another important ignition source. A study of cloud ice fluxes — changes in the mass of ice particles in clouds over time, which are positively correlated with lightning strikes — projected an overall decrease in lightning strikes, especially in tropical regions, but a likely increase over North America and Siberia.

Furthermore, the wildfire season is starting much earlier and ending later because of a warming climate. Consequently, there is a wider window in which wildfires can occur and a narrower window for prescribed burning — deliberate burning of available vegetation during cooler seasons, which is an essential strategy to reduce the risk of wildfires.

Fire suppression and the conversion of tropical savannas and grasslands to agricultural lands have resulted in a decline of approximately 30% in the overall global area of land burned by wild-
fires since 1930, but the area of land burned in dense forests has increased. Deliberate setting of fires to convert tropical forest to open lands (e.g., agricultural lands, cattle ranches, and lands for real-estate speculation) contributes to climate change and to the associated disease burden through large emissions of greenhouse gases and air pollutants. Although wildfires and climate change could reduce the availability and growth of vegetation, the risk and severity of wildfires in forests (often alongside human activities) and the area of land burned are expected to increase in the future.

The interplay between climate change and wildfires could be reinforcing and synergistic (Fig. 1). From 1997 to 2016, the global mean carbon dioxide emissions from wildfires equated to approximately 22% of the carbon emissions from burning fossil fuels. Forest loss in tropical areas due to wildfires damages the Earth's ability to absorb carbon dioxide and to cool the climate. Wildfires in the Arctic and boreal forest ecosystem could melt the permafrost in that region directly and lead to the release of previously frozen carbon and methane, which is a stronger greenhouse gas than carbon dioxide.

Health Risks Associated with Wildfires

The health risks associated with wildfires include direct risks from exposure to fires or involvement in wildfire events, as well as risks from wildfire smoke (Fig. S1 in the Supplementary Appendix, available with the full text of this article at NEJM.org).

Direct Health Risks from Wildfire Events

For firefighters and people living near wildfires, direct health effects include burns, injuries,
mental health effects, and death due to exposure to flames or radiant heat.7 For example, the 2009 “Black Saturday” wildfires in Australia killed 173 people directly; in the first 72 hours, 146 patients with burns and 64 with physical trauma presented to local emergency departments.19 In addition, firefighters are at high risk for heat-related illnesses ranging from dehydration-induced heat cramps to life-threatening heat stroke.20

Owing to traumatic experiences, property loss, and displacement, residents in areas affected by wildfires are at an increased risk for mental illness, including post-traumatic stress disorder, depression, and insomnia.21 The psychological consequences of wildfire events can persist for years,22 and children and adolescents are particularly vulnerable.23 A 20-year follow-up study showed that exposure to wildfires in childhood was associated with an increased likelihood of mental illness in adulthood.24 Furthermore, wildfire events have been associated with a subsequent decrease in academic performance in children.25

Health Risks from Wildfire Smoke

In areas surrounding a wildfire, heavy smoke can cause eye irritation and corneal abrasions and can substantially reduce visibility, increasing the risk of traffic accidents.7 As far as 1000 km away, wildfire smoke can increase ambient air pollution,26 along with associated risks of illness and death.

Air Pollutants from Wildfire Smoke

The primary air pollutants from wildfire smoke are particulate matter; carbon monoxide; nitrogen oxides, including nitrogen dioxide and nitric oxide; and volatile organic compounds.27,28 A photochemical reaction between volatile organic compounds and nitrogen oxides under sunlight generates a secondary pollutant, ground-level ozone.27 Peat fires, such as those that occurred in Indonesia during the 2015 El Niño event, may extend up to 20 m underground and result in an extraordinarily high level of air pollution, including high emissions of carbon dioxide and many potentially toxic compounds, such as formaldehyde and hydrogen cyanide.29

The major pollutants of public health concern during wildfire events are carbon monoxide, ozone, and particulate matter.10 Increases in carbon monoxide are usually restricted to the areas that are directly affected by the fire, but ozone and particulate matter spread much farther.28 Wildfire smoke is an increasingly important source of ambient air pollution in the United States, where industrial emissions of air pollutants are declining.30 In the United States between 1997 and 2016, wildfires were a contributing factor on approximately 10% of the days that the surface ozone level exceeded the 8-hour standard (70 parts per billion).28 Most studies evaluating the health effects of wildfire smoke have focused on the health risks associated with wildfire particulate matter with a diameter of 10 μm or less (PM$_{10}$) (Table 1). PM$_{10}$ includes fine particles (diameter, ≤2.5 μm [PM$_{2.5}$]), submicron particles (diameter, ≤1 μm [PM$_1$]), and ultrafine particles (diameter, ≤0.1 μm [PM$_{0.1}$]); smaller particle size is correlated with a greater toxic effect.35 Although it is clear that urban background PM$_{2.5}$ has major effects on human health, the evidence specifically for wildfire PM$_{2.5}$ is more limited.

Short-Term Health Effects of Wildfire Smoke

Studies suggest a consistent association between the level of particulate matter during wildfire events and the risk of death from any cause or nonaccidental death, but the association between the level of wildfire particulate matter and the risk of death from specific causes (e.g., respiratory or cardiovascular causes) remains uncertain, possibly because of limited sample sizes (details are provided in Table S1).37 In the vicinity of the 2020 California wildfires, the daily mean PM$_{2.5}$ level has often reached 350 to 500 μg per cubic meter, far exceeding the 24-hour standard in the United States (35 μg per cubic meter); as far as 1000 km away from the fires, the daily mean PM$_{2.5}$ level has reached 35 to 150 μg per cubic meter.2 During wildfire events, each increase of 10 μg per cubic meter in the daily PM$_{2.5}$ level and in the daily PM$_{10}$ level has been associated with an increase of 0.8 to 2.4% and 0.8 to 3.5%, respectively, in the risk of death from any cause or nonaccidental death for up to 4 days after the exposure.8,9,36 In comparison, in a recent global study, the same change in the daily PM$_{2.5}$ level and the daily PM$_{10}$ level (regardless of the source, with mainly urban sources) was associated with an increase of 0.68% and 0.44%, respectively, in the daily risk of death from any cause.37 Although this comparison does not account for location-specific modifying factors (e.g., socioeconomic and climatic factors),37 it suggests that wildfire particulate...
Details regarding the short-term health effects of wildfire particulate matter are provided in Table S1 in the Supplementary Appendix, available at NEJM.org. Particulate matter with a diameter of 10 μm or less (PM$_{10}$) includes fine particles (diameter, ≤2.5 μm [PM$_{2.5}$]), submicron particles (diameter, ≤1 μm [PM$_{1}$]), and ultrafine particles (diameter, ≤0.1 μm [PM$_{0.1}$]). PAH denotes polycyclic aromatic hydrocarbon.

As compared with urban background particulate matter, wildfire particulate matter tends to have a smaller particle size31 and to contain more oxidative components (e.g., oxygenated polycyclic aromatic hydrocarbons and quinones) and proinflammatory components (e.g., aldehydes and oxides of nitrogen),33 features that potentially lead to stronger toxic effects.35 In addition, the high temperatures that often accompany wildfires and the oxidant gases from wildfires (ozone and nitrogen dioxide) can amplify the health risks of wildfire particulate matter.17,38

Exposure to wildfire particulate matter is associated with an increased risk of respiratory events, including impaired lung function and hospitalizations, emergency department visits, physician visits, and medication use for asthma, chronic obstructive pulmonary disease, and respiratory infection (Table S1).9,36,39 The associa-
Vulnerable Populations Affected by Wildfire Smoke

Populations that are particularly vulnerable to adverse effects of wildfire smoke include people 65 years of age or older, who have an increased risk of short-term respiratory events; people with preexisting cardiac or respiratory conditions (or both) and people living in low-income areas, who have an increased risk of short-term cardiopulmonary events; and pregnant women, who have a risk of adverse pregnancy outcomes. Outdoor workers are also a high-risk group, owing to their increased exposure to wildfire smoke.

It is hypothesized that children are more susceptible to harm from wildfire smoke than adults because they have less mature respiratory and immune systems, have a higher breathing rate relative to body size, and spend more time outdoors. Priority should be given to these vulnerable populations when implementing strategies to reduce the health risks of wildfire smoke (e.g., staying indoors or using air cleaners).

Protecting Health against Wildfires

It is important for residents in areas affected by wildfires to keep track of reliable information and community evacuation plans during the wildfire season and to gather emergency supplies (e.g., food, water, medication, and N95 or P100 face masks) before wildfires occur. When evacuation is required, it is important to drive with caution in conditions of low visibility. People who present with eye irritation should be screened for corneal abrasions, if possible. Careful triage and planning for each patient before hospitalization can improve the ability of surrounding hospitals to manage increased patient loads.

Personal protective equipment, rest periods, adequate hydration, and health awareness are vital for preventing heat-related illnesses in firefighters. Psychological support services are important for addressing mental health effects during and after wildfires, especially in children and the most affected communities. Wildfire ash, which contains polycyclic aromatic hydrocarbons and heavy metals, can heavily pollute the water and land in affected communities, and these areas must be cleaned after the event, in accordance with guidelines. During and after wildfire events, residents in affected areas should avoid drinking from water supplies that could be contaminated by wildfire ash, fire retardant, dead vegetation, contaminated by wildfire ash, fire retardant, dead vegetation,
animals, or damaged water pipes, until testing confirms that the water is safe to drink.52

Public agencies are responsible for releasing accurate and clear information regarding air quality and advice regarding health protection against wildfire smoke.10,52 Residents should keep track of the air quality and adjust their behavior accordingly.10 When air-quality data are not available, residents should “trust their senses” — that is, use risk-reduction strategies when smoke can be smelled or seen or when visibility is substantially reduced, even when a wildfire is at a distance.52 Key strategies that individual people can use to minimize health risks associated with wildfire smoke are summarized in Figure 2.10,32,53

However, all these strategies have limitations. For example, wearing an N95 or P100 face mask can cause physical stress from increased work of breathing, heat, and discomfort, particularly in the hot weather that is common during wildfire events.53 Both central air conditioners with high-efficiency filters and portable air cleaners with high-efficiency particulate air (HEPA) filters can reduce indoor levels of PM2.5 efficiently, but neither can remove gaseous pollutants, and some electronic air cleaners (e.g., some electrostatic precipitators and ionizers) could even generate ozone.10 Air cleaners or filters that are designed for removing gaseous pollutants remain limited. The most widely used activated carbon filters can clean volatile organic compounds and odors but not ozone (details are provided in the Supplementary Appendix). Cost is also a concern, especially in the low-income population, given that air cleaners that cost less than $200 are often ineffective in removing air pollutants.10

It has been proposed that the use of rescue medications might decrease the respiratory effects of wildfire smoke among children with asthma.54 However, data are lacking to inform the effectiveness of such medications in this population or in other people with chronic conditions (e.g., asthma, chronic obstructive pulmonary disease, or heart diseases) after exposure to wildfire smoke.

![Figure 2. Main Actions That Individual People Can Take to Reduce Exposure to Wildfire Smoke and Its Health Risks.](https://example.com/figure2)

Data are adapted from the Centers for Disease Control and Prevention,9 Vardoulakis et al.,32 and Laumbach.53 The strategies are organized according to the hierarchy of controls proposed by the National Institute for Occupational Safety and Health (NIOSH).11 The use of N95 or P100 face masks certified by the NIOSH or their potential equivalents (e.g., KN95 or P95 masks) is recommended. Recommendations regarding the use of face masks, air conditioning, and air cleaners are provided in the Supplementary Appendix, available at NEJM.org. HEPA denotes high-efficiency particulate air.
fires will substantially increase over 74% of the global land mass by the end of this century. However, if immediate climate change–mitigation steps are taken to limit the global mean temperature increase to 2.0°C or 1.5°C above the preindustrial level, then 60% or 80%, respectively, of the increase in wildfire exposure could be avoided (Fig. 3). Reaching the 1.5°C target

Figure 3. Projected Change from 1981–2000 to 2080–2099 in Frequency of Wildfires and Length of Wildfire Season, According to Global Mean Surface-Temperature Increase.

Adapted from Sun et al. Shown is the projected change from 1981–2000 to 2080–2099 in the frequency of wildfires (days with wildfire events per year) and the length of the wildfire season (days with a normalized daily fire danger index value above a threshold of 50 per year) with an increase in the global mean surface temperature of 1.5°C (Panels A and B, respectively) and with an increase of 2.0°C (Panels C and D, respectively) relative to the preindustrial level. Also shown is the projected change under the conditions of representative concentration pathway (RCP) 8.5 (Panels E and F, respectively), which is a future scenario of high greenhouse-gas emissions and no climate change–mitigation policy, with an increase in the global mean surface temperature of 3.2°C to 5.4°C relative to the preindustrial level (corresponding to an increase of 2.2°C to 4.4°C relative to the 2019 level). Details are provided in the Supplementary Appendix.
would require reducing global net anthropogenic carbon dioxide emissions from 2010 levels by approximately 45% by 2030 and reaching “net zero” by around 2050. The 1.5°C target remains achievable if carbon dioxide emissions decline by 7.6% per year from 2020 to 2030.55

Cutting carbon emissions may appear to be difficult and costly, but its near-term benefits outweigh its costs in many areas. Even only accounting for the improved air quality due to the reduction in burning fossil fuels, the cost savings associated with reduced mortality and morbidity from exposure to PM$_{2.5}$ and ozone is estimated to be 1.40 to 2.45 times as high as the cost of reducing carbon emissions, albeit with considerable regional variation.57 The long-term benefits of avoiding health and other risks of climate change, including those associated with wildfires, are additional motivations for urgent climate actions.

As a trusted source, health professionals are responsible for educating the public about the health risks of wildfires and risk-reduction strategies. They can also focus on reducing the carbon intensity of health care systems and advocate for lifestyles, actions, and policies with low environmental impact, such as the rapid transition to renewable energy.56

CONCLUSIONS

Wildfires are associated with increased morbidity and mortality, but there are many gaps in knowledge regarding their health effects. At the individual level, people can do little to reduce the adverse health consequences of exposure to wildfires. Societal action is requisite. Without immediate actions to limit the global temperature increase, the interplay between wildfires and climate change is likely to form a reinforcing feedback loop, making wildfires and their health consequences increasingly severe.

From the School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC (R.X., P.Y., M.J.A., S.L., Y.G.), and Menzies Institute for Medical Research, University of Tasmania, Hobart (F.H.J.) — both in Australia; the Colorado School of Public Health, University of Colorado, Aurora (J.M.S.); the School of the Environment, Yale University, New Haven, CT (M.L.B.); the Department of Public Health, Environments, and Society and Department of Population Health, Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London (A.H.); and the Center for Health and the Global Environment, University of Washington, Seattle (K.L.E.). Address reprint requests to Dr. Guo at the School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St. Kilda Rd., Melbourne, VIC 3004, Australia, or at yuming.guo@monash.edu, or to Dr. Li at the School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St. Kilda Rd., Melbourne, VIC 3004, Australia, or at shanshan.li@monash.edu.

This article was published on October 9, 2020, at NEJM.org.

16. Arora VK, Melton JR. Reduction in global area burned and...