

Heat-related Morbidity and Mortality

Jeremy Hess, MD, MPH Professor, Schools of Medicine and Public Health Director, Center for Health and the Global Environment (CHanGE)

UNIVERSITY of WASHINGTON
SCHOOL OF PUBLIC HEALTH

Overview

- > Learning objectives
- > Rationale
- > The health effects of extreme heat
- > Prevention, diagnosis, and treatment
- > Impacts at different scales
- > Questions and discussion

UNIVERSITY of WASHINGTON
SCHOOL OF PUBLIC HEALTH

LEARNING OBJECTIVE S

Image available here

After Today's Session, You Will Be Able To:

- Articulate why extreme heat exposure can endanger people's health;
- Explain how excess heat exposure can overload physiological systems;
- Describe the presentation and management of acute heat illnesses;
- State how an extreme heat event stresses health system operations;
- > List groups of people at higher risk from heat exposure;
- Describe strategies for reducing health risks related to heat exposure in the short- and long-term

UNIVERSITY of WASHINGTON
SCHOOL OF PUBLIC HEALTH

RATIONALE

Watts et al. 2019

Heat Is Central to Climate Change

Fundamentally, climate change is driven by increased retention and re-radiation of heat by the Earth's atmosphere

Humans are Euthermic

By Crossover1370 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=111100008

UNIVERSITY of WASHINGTON
SCHOOL OF PUBLIC HEALTH

We Have a Minimum Mortality Temperature

UNIVERSITY of WASHINGTON
SCHOOL OF PUBLIC HEALTH

UW Medicine DEPARTMENT OF EMERGENCY MEDICINE

Curriero et al. 2002

Shifting Temperature Distributions

UNIVERSITY of WASHINGTON
SCHOOL OF PUBLIC HEALTH

Implications for Extreme Event

- > An extreme heat event with a 10-year return period in the historic climate now occurs 2.8 times as often
- > An extreme heat event with a 50y-ear return period now occurs 4.8 times as often

UNIVERSITY of WASHINGTON
SCHOOL OF PUBLIC HEALTH

UW Medicine

IPCC AR6 WG1 SPM

Projected Warming

(a) Global surface temperature change relative to 1850–1900

SCHOOL OF PUBLIC HEALTH

UW Medicine

IPCC AR6 WG1 SPM

Vicedo-Cabrera et al. 2021

HEALTH EFFECTS OF EXTREME HEAT

W

Heat Transfer and Heat Balanc

- > Narrow temperature range
 - Behavioral maintenance
 - Physiological maintenance
- > Exogenous heat
 - Solar radiation
 - Environment
- > Endogenous heat
 - Baseline metabolic activity
 - Additional physical activity
- > Heat Dissipation
 - Radiation
 - Conduction
 - Convection
 - Evaporation

Available here

CHan

UNIVERSITY of WASHINGTON | SCHOOL OF DURUG HEALT

UNIVERSITY of WASHINGTON
SCHOOL OF PUBLIC HEALTH

Thermoregulation at 35°C

Air Temperature (°F)

		80	82	84	86	88	90	92	94	96	98	100	102	104	106	108	110	112	114	116
	5	78	80	81	83	84	86	88	89	91	93	94	96	97	99	101	102	104	105	107
	10	78	80	81	83	84	86	88	89	91	93	95	97	99	101	103	105	107	109	111
	15	78	80	81	83	84	86	88	90	92	94	96	98	100	103	105	108	111	113	116
	20	79	80	81	83	85	86	88	90	93	95	97	100	103	131	109	112	115	119	122
	25	79	80	82	83	85	87	89	91	94	97	100	103	106	110	113	117	121	125	129
	30	79	80	82	84	86	88	90	93	96	99	102	106	110	114	118	122	127	132	137
S	35	80	81	83	85	87	89	92	95	98	102	106	110	114	119	123	129	134	140	146
	40	80	81	83	85	88	91	94	97	101	105	109	114	119	124	130	136	142	148	
	45	80	82	84	87	89	93	96	100	104	109	114	119	124	130	137	143			
	50	81	83	85	88	91	95	99	103	108	113	118	124	131	137					
	55	81	84	86	89	93	97	101	106	112	117	124	130	137						
	60	82	84	88	91	95	100	105	110	116	123	129	137							
	65	82	85	89	93	98	103	108	114	121	128	136								
	70	83	86	90	95	100	106	112	119	126	134									
	75	84	88	92	97	103	109	116	124	132										
	80	84	89	94	100	106	113	121	129											
	85	85	90	96	102	110	117	126	135											
	90	86	91	98	105	113	122	131												
	95	86	93	100	108	117	127													
1	00	87	95	103	112	121	132													

Relative Humidity (%)

Bouchama and Knochel 2002

System	Physiology	Mechanisms	Compensation	Decompensation	Outcomes
Cardiac	Increased cardiac output to meet	Increased inotropy and	Maintained or increased cardiac	Decreased cardiac output due to	Peripheral, central
	increased metabolic demand	chronotropy via	output via increased heart rate	decreased stroke	hypoperfusion; acute coronary
		and other pathways	and contractility		syndrome; myocardial
Vascular	Paripharal	Sympathotic	Enhanced	Decreased	infarction Sonsis and
vasculai	Peripheral vasodilation, central vasoconstriction	Sympathetic nervous system and local reflex pathways	peripheral blood flow to facilitate cooling and sweating	splanchnic blood, tissue hypoxia, endotoxemia, bloodstream infection	Sepsis and septic shock
Renal	Increased reabsorption to compensate for insensible water and electrolyte losses	Vasopressin, Renin-angiotensi n-aldosterone system, renal sympathetic nerve activity	Increased free water retention, increased electrolyte retention, decreased renal blood flow	Insufficient renal perfusion, inability to maintain adequate water and electrolyte reabsorption rates	Dehydration, electrolyte abnormalities, acute kidney injury

System	Physiology	Mechanisms	Compensation	Decompensation	Outcomes
Immune	Activation of	Endothelial,	Protection against	Increased	Distributed
	coordinated	epithelial,	tissue injury,	hypoxemia,	shock similar to
	stress response	leukocyte	enhanced repair	cytotoxic injury	systemic
		response via		lead to	inflammatory
		cytokines, heat		dysregulated	response
		shock proteins		immune response	syndrome
Hemato-l	Initial increase,	Sympathetic	Support cardiac	Increased viscosity,	Disseminated
ogic	then decrease,	nervous	output, insensible	altered coagulation	intravascular
	in plasma	system,	water losses		coagulation,
	volume	activation of			tissue
		coagulation			hypoxemia and
		and fibrinolytic			cell death
		pathways			

System	Physiology	Mechanisms	Compensation	Decompensation	Outcomes
Central	Behavioral and	Multiple	Behavioral,	Cerebral	Confusion,
Nervous	physiologic	thermoregulat	physiologic	hypoperfusion and	delirium, dizziness,
System	responses to	ory pathways	responses that	dysregulation of	weakness,
	reduce	coordinated by	reduce heat load	thermal	agitation,
	exogenous	the preoptic	and increase heat	homeostasis	combativeness
	heat exposure,	hypothalamus	loss		
	increase heat				
	loss				
Repro-ducti	Reduced	Sympathetic	Reduced placental	Dysregulation of	Miscarriage,
ve	placental	nervous	blood flow with	thermal	pre-term labor
	blood flow to	system and	relative	homeostasis	
	support	local reflex	preservation of	leading to core	
	peripheral	pathways	nutrient transfer to	temperature over	
	vasodilation		fetus	teratogenic	
				threshold	

Heat Edema

UNIVERSITY of WASHINGTON
SCHOOL OF PUBLIC HEALTH

UW Medicine

Available <u>here</u>.

Variations of Heat Rash

Miliaria Crystalline

Miliaria Pustulosa

Miliaria Rubra

Miliaria Profunda

UNIVERSITY of WASHINGTON
SCHOOL OF PUBLIC HEALTH

UW Medicine DEPARTMENT OF EMERGENCY MEDICINE

Available here.

Acute Heat Illness Spectrum

UNIVERSITY of WASHINGTON
SCHOOL OF PUBLIC HEALTH

UW Medicine DEPARTMENT OF EMERGENCY MEDICINE

Available

Entity	Case Definition
Heat rash	Diffuse, pruritic, maculopapular or vesicular rash in the setting of heat exposure, often with insulating clothing or swaddling
Heat edema	Mild edema on dependent areas, often seen during early heat acclimitization, resolves spontaneously in a few days
Heat tetany	Rare, self-limiting condition in patients with short, intense heat exposure, with hyperventilation, paraesthesias
Heat cramps	Painful contractions of frequently-used muscle groups
Heat syncope	Brief loss of consciousness in the setting of heat exposure without evidence of seizure activity, stroke, or overdose
Heat exhaustion	Syndrome with generalized weakness, exhaustion, lightheadedness, nausea, limiting function, without recent infection. May or may not be exertional
Heat stroke	Altered mental status (including disorientation, delirium, seizure, obtundation), with elevated core body temperature ≥40°C, in the setting of heat exposure, without signs of stroke, history of infection, or signs of overdose. May or may not be exertional

PREVENTION, DIAGNOSIS, AND TREATMENT

Image available <u>here</u>

Primary Prevention

- Acclimatize risks are greatest at beginning of heat season
- Prevent exposure on hot days – heed warnings
- > Prevent over-exertion
- Prevent exposure to heat sources
- Discuss heat relief plans with employers, supervisors, employees

Secondary Prevention

- Know early symptoms of heat illness
- > Take time to cool down
- > Monitor hydration, e.g., look for dark urine
- Provide for cooler, shaded places to rest, drinking water
- > Be ready to call for help

Tertiary Prevention

- > Call for prompt medical attention, e.g. 911
- > ABCs
- Rapid cooling: Expose, wet, evaporate
- Targeted passive cooling: ice packs in groin, axilla
- Rule out alternative causes

UNIVERSITY of WASHINGTON
SCHOOL OF PUBLIC HEALTH

Heat Illness Diagnosis

- > Primarily clinical
- > History is often very important
 - Includes history of time, location, exogenous heat sources, activities, cooling measures
 - For more severe forms, pertinent negatives (infection, overdose, known seizure history) are also important to rapidly ascertain
- > Laboratory and imaging tests are often used to support clinical diagnosis and guide therapy

UNIVERSITY of WASHINGTON
SCHOOL OF PUBLIC HEALTH

Treatment

- Acute syndrome often primarily related to heat dissipation more than dehydration
- More chronic presentations typically related to dehydration more than elevated temperature

UNIVERSITY of WASHINGTON
SCHOOL OF PUBLIC HEALTH

CONDITION

INTERVENTION

GOAL

Out of hospital	
Heat stress (due to heat wave, summer heat, or strenuous exercise), with changes in mental status (anxiety, delirium, seizures, or coma)	Measure the patient's core temperature (with a rectal probe) If the core temperature is >40°C, move the patient to a cool- er place, remove his or her clothing, and initiate external cooling‡: cold packs on the neck, axillae, and groin; con- tinuous fanning (or opening of the ambulance windows); and spraying of the skin with water at 25°C to 30°C
	Position an unconscious patient on his or her side and clear
	the airway Administer oxygen at 4 liters/min
	Give isotonic crystalloid (normal saline)
	Rapidly transfer the patient to an emergency department
In hospital	
Cooling period	Confirm diagnosis with thermometer calibrated to measure high temperatures (40°C to 47°C)
Hyperthermia	Monitor the rectal and skin temperatures; continue cooling
Seizures	Give benzodiazepines
Respiratory failure	Consider elective intubation (for impaired gag and cough re- flexes or deterioration of respiratory function)
Hypotension¶	Administer fluids for volume expansion, consider vasopres- sors, and consider monitoring central venous pressure
Rhabdomyolysis	Expand volume with normal saline and administer intrave- nous furosemide, mannitol, and sodium bicarbonate
	Monitor serum potassium and calcium levels and treat hyper- kalemia
After cooling Multiorgan dysfunction	Supportive therapy

Bouchama and Knochel 2002

Diagnose heat stroke[†] Lower the core temperature to <39.4°C, promote cooling by conduction, and promote cooling by evaporation

Minimize the risk of aspiration

Increase arterial oxygen saturation to >90% Provide volume expansion

Keep rectal temperature <39.4°C§ and skin temperature 30°C-33°C Control seizures Protect airway and augment oxygenation (arterial oxygen saturation >90%) Increase mean arterial pressure to >60 mm Hg and restore organ perfusion and tissue oxygenation Prevent myoglobin-induced renal injury: promote renal blood flow, diuresis, and alkalization of urine Prevent life-threatening cardiac arrhythmia

Recovery of organ function

Rapid Passive Cooling

C Healthwise, Incorporated

• PUTTING IT ALL TOGETHER

Image available here

2006 California Heat Wave

BACKGROUND: Climate models project that heat waves will increase in frequency and severity. Despite many studies of mortality from heat waves, few studies have examined morbidity.

OBJECTIVES: In this study we investigated whether any age or race/ethnicity groups experienced increased hospitalizations and emergency department (ED) visits overall or for selected illnesses during the 2006 California heat wave.

METHODS: We aggregated county-level hospitalizations and ED visits for all causes and for 10 cause groups into six geographic regions of California. We calculated excess morbidity and rate ratios (RRs) during the heat wave (15 July to 1 August 2006) and compared these data with those of a reference period (8–14 July and 12–22 August 2006).

RESULTS: During the heat wave, 16,166 excess ED visits and 1,182 excess hospitalizations occurred statewide. ED visits for heat-related causes increased across the state [RR = 6.30; 95% confidence interval (CI), 5.67–7.01], especially in the Central Coast region, which includes San Francisco. Children (0–4 years of age) and the elderly (\geq 65 years of age) were at greatest risk. ED visits also showed significant increases for acute renal failure, cardiovascular diseases, diabetes, electrolyte imbalance, and nephritis. We observed significantly elevated RRs for hospitalizations for heat-related illnesses (RR = 10.15; 95% CI, 7.79–13.43), acute renal failure, electrolyte imbalance, and nephritis.

CONCLUSIONS: The 2006 California heat wave had a substantial effect on morbidity, including regions with relatively modest temperatures. This suggests that population acclimatization and adaptive capacity influenced risk. By better understanding these impacts and population vulnerabilities, local communities can improve heat wave preparedness to cope with a globally warming future.

UNIVERSITY of WASHINGTON SCHOOL OF PUBLIC HEALTH

Chronic Disease Exacerbations

 Table 2. Statewide ED visits and hospitalization RRs, for all ages, all race/ethnicity groups combined, during the 2006 California heat wave (15 July to 1 August 2006), versus the reference period (8–14 July and 12–22 August 2006), evaluated from combined primary and secondary diagnoses.

			ED visits			Hospitalizations	
Diagnosis	ICD-9-CM code	Reference period	Heat-wave period	RR (95% CI)	Reference period	Heat-wave period	RR (95% CI)
All causes	All	485,785	501,951	1.03 (1.02-1.04)	191,826	193,008	1.01 (1.00-1.01)
Internal causes	0-799.9	386,229	399,699	1.03 (1.03-1.04)	172,864	173,843	1.01 (1.00-1.01)
Diabetes	250	37,321	38,315	1.03 (1.01-1.04)	27,644	27,920	1.01 (0.99-1.03)
Electrolyte imbalance	276	30,076	35,020	1.16 (1.15-1.18)	25,647	28,003	1.09 (1.07-1.11)
Cardiovascular diseases	390–398, 402, 404–429, 440–448	45,613	46,515	1.02 (1.01–1.03)	48,327	<mark>48,82</mark> 1	1.01 (1.00–1.02)
Acute MI	410	2,822	2,869	1.02 (0.96-1.07)	3,630	3,688	1.02 (0.97-1.06)
Cerebrovascular disease	430-438	7,397	7,250	0.98 (0.95-1.01)	8,266	8,138	0.98 (0.95-1.02)
Respiratory illnesses	460-519	64,051	64,213	1.00 (0.99-1.01)	36,753	37,226	1.01 (1.00-1.03)
Nephritis and nephrotic syndrome	580-589	12,185	12,935	1.06 (1.04-1.09)	14,118	14,801	1.05 (1.02-1.07)
Acute renal failure	584	5,085	5,839	1.15 (1.11-1.19)	6,541	7,288	1.11 (1.08-1.15)
Heat-related illnesses	<mark>9</mark> 92	403	2,537	6.30 (5.67–7.01)	61	619	10.15 (7.79–13.43)

UNIVERSITY of WASHINGTON
SCHOOL OF PUBLIC HEALTH

Our Experience

- > Historically unprecedented extreme heat event
- > Relatively short advance warning
- > Acute-on-chronic capacity constraints
- > Large vulnerable populations, insufficient protections

UNIVERSITY of WASHINGTON | SCHOOL OF PUBLIC HEALT

UNIVERSITY of WASHINGTON SCHOOL OF PUBLIC HEALTH

DEPARTMENT OF EMERGENCY MEDICINE

Population Vulnerability

- > Historically cool regional climate
 - Housing built for heat retention
 - Relatively low AC prevalence
- > Little lived experience with heat
 - Relatively low population and health sector awareness
- Population growing faster than health care capacity
 - Differentially constrained by SES

UW Medicine

DEPARTMENT OF

- Acute staffing from COVID

🛑 1466 - 1776 (12 States) 🔴 1291 - 1466 (13 States) 🥘 1188 - 1291 (13 States) 💮 413 - 1188 (13 States)

UNIVERSITY of WASHINGTON
SCHOOL OF PUBLIC HEALTH

Health Impacts

- Deadliest weather-related event in Washington history
- At least 3,500 ED visits in four-state region (CDC); 100-fold increase in heat-related ED visits on

UNIVERSITY of WASHINGTON
SCHOOL OF PUBLIC HEALTH

Preparedness and Learning

- > We are well prepared for the clinical impacts we will see
- > We are less prepared for:
 - Presentations outside our expectations
 - Events beyond our experience
 - Combinations that overwhelm the systems we have developed
- > We need information systems that:
 - Give us insight into changing risk distributions
 - Strategies for reducing emerging risks as they occur
 - Methods for implementing quickly and at scale
- > Assuming current trends persist, we will very likely need to prepare for a new risk regime circa 2050

UNIVERSITY of WASHINGTON
SCHOOL OF PUBLIC HEALTH

The Tools We Have

Sacket et al., 1996

UNIVERSITY of WASHINGTON
SCHOOL OF PUBLIC HEALTH

Evidence-based Practice Support

UNIVERSITY of WASHINGTON
SCHOOL OF PUBLIC HEALTH

UW Medicine

UMich, available

From Etiology to Therapy

UNIVERSITY of WASHINGTON
SCHOOL OF PUBLIC HEALTH

Units of Analysis

UNIVERSITY of WASHINGTON
SCHOOL OF PUBLIC HEALTH

Individual-level Interventions

- Expert-opinion guidance regarding risk reduction
- Based on understanding of physiology and principles of sustainability
- No generalizable estimates of risk reduction potential

UNIVERSITY of WASHINGTON SCHOOL OF PUBLIC HEALTH

UW Medicine DEPARTMENT OF EMERGENCY MEDICINE

Jay et al. 2021

Systems-level Interventions

UNIVERSITY of WASHINGTON
SCHOOL OF PUBLIC HEALTH

UW Medicine

Jay et al. 2021

Population-level Interventions

Identify temperature thresholds (harm)

Forecast likelihood of crossing threshold(s)

Issue warning based on risk assessment (prognosis)

Interventions (therapy)

UNIVERSITY of WASHINGTON
SCHOOL OF PUBLIC HEALTH

Building Resilience

Adaptation

Change in land use, relocation

Seal Buildings

Green

Infrastructure

Water and Energy

Conservation

Smart

Growth

Emergency & business continuity planning

Upgrades or hardening of building and infrastructure

Residential programs promoting adaptation

Health programs

Mitigation

Energy conservation and efficiency

Renewable energy

Sustainable transportation, improved fuel efficiency

Capture and use of landfill and digester gas

Carbon sinks

UNIVERSITY of WASHINGTON
SCHOOL OF PUBLIC HEALTH

UNIVERSITY of WASHINGTON

Baseline Risk 2

- -Daily All Cause Mortality (7 day moving average (2009-2011))
- -Daily All Cause Mortality (2010 Study Period)

UNIVERSITY of WASHINGTON

Setting the Thresholds

EMERGENCY MEDICINE

Ahmedabad Heat Action Plan

UNIVERSITY of WASHINGTON

Relative Risk of Death Pre- and Post-HAP

Ahmedabad - PRE & POST HAP Comparison

Temperature

UNIVERSITY of WASHINGTON SCHOOL OF PUBLIC HEALTH

Scaling Up Effective Interventions

FACTINEE

INTERNATIONAL: INDIA

EXPANDING HEAT RESILIENCE ACROSS INDIA

INTRODUCTION

With temperatures breaking records around the globe, cities and regions across India are taking concrete actions to better prepare and protect local communities from deadly heat. Climate change drives global average temperatures upwards and increases the frequency, intensity, and duration of heat

Building on the ground-breaking Ahmedabad Heat Action Plan (HAP) released in 2013, momentum is building toward developing and implementing early warning systems and preparedness plans for extreme heat at the city, state, and national levels. In 2018, based on guidance provided by the central government, 13 states and over 30 cities have adopted or are developing heat action plans.

At the national level, the National Disaster Management Authority (NDMA) has expanded efforts to support statelevel heat action plans and launched a nationwide Beat the Heat India communication campaign aimed at raising public meaneness. The Indian Meteorological Department (IMD) continues to provide season and daily forecasts to over V/0 cities.3 The IMD forecasts are a critical trigger for prompting early warning for extreme heat by city officials.

The Natural Besturces Defense Council (NBDC) and Public Health Foundation of India - Indian Institute of Public

- Minhm, V. Mukrospe, S. Warnz, R. and Stores, D. "Most wave expression in molar in current, 1: 5:10, and 2:0.0 "C works", 2017. Auxiliate online: https://opscieecs.op.org/article/10.0088/17369-9224/auX388/ppd (bccoreado on: 58 Auguot: 2018)
- (Accessed on: 55 August, 2018) Penkine, S.E., Nexander, L.V. and Narle, J.R., "Increasing heppening internetly and duration of asserved heat serves and warm spells".
- Internity and duration of deserved beet news and isaring spells, 2013, Available enfiner report, "Opposite Anti-Means Joing Controlled" apd/110.1009(2013)201301801388, (Accessed on: 36 August, 2013) Indian Methodological Department (MIC), Well India Head Mays Milwin 2013, Available offer http://www.intia.gov.lk/pages/head-sev.php. (Accessed on: 38 August, 2013)

SCPTEMBER 2018

Health-Gandhinagar (PHFI-IIPH-G) work with government leaders and key experts across India and internationally to develop lassed, and implement heat action plans. This issue brief highlights the progress at the city, state and national level in 2018 to improve climate resilience to extreme heat and captures key elements of heat action plans.

NATIONAL LEADERSHIP

NDMA identified 17 heat-prone states and developed the first national Guidelines on Heat Wayes in 2016 with the aim to strengthen heat preparedness.4 NDMA convenes annual national level workshops on preparedness, monitoring and management strategies with state and city officials as well. as key experts to ramp up activities and share information. NDMA also coordinates with state disaster management departments to support local activities. In 2018, NDMA's

National Olasmer Management Authority (NDMM, "Guidelines for Preparation of Action Pan – Prevention and Naturgement of Hearthows 2015 / Masteline online: Https://www.thtms.guidelines/ heartsmanaguidelines2017.pdf (Actioned on: 17 August, 2018)

ROC INTERNATIONAL: INDIA PAGE 1

HARYANA DELHI **UTTAR PRADESH** Rahat BIHAR **GUJARAT JHARKHAND** Ahmedabad Hazaribagh Rajkot Surat **ODISHA** MAHARASHTRA Bhubaneswar Nagpur Puri Gondia TELANGANA Koraput Chandrapur Hyderabad Baleshwar Nanded Akola **ANDHRA PRADESH** Jalgaon Vijaywada/Amravati **KARNATAKA**

UNIVERSITY of WASHINGTON SCHOOL OF PUBLIC HEALTH

UW Medicine DEPARTMENT OF EMERGENCY MEDICINE

Summary

- > Humans are euthermic and maintain heat balance
- > Excess heat threatens normal function
- > Climate change is warming environments rapidly
- > Body systems attempt to compensate; this can stress body systems
- > Decompensation leads to heat stroke
- > Diagnosis is clinical; rapid cooling is essential
- > Health systems and larger communities are at risk

UW Medicine

> Broad efforts, e.g. HAPs, can reduce risks

UNIVERSITY of WASHINGTON
SCHOOL OF PUBLIC HEALTH

Thank You!

jjhess@uw.edu

UNIVERSITY of WASHINGTON
SCHOOL OF PUBLIC HEALTH

