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* The internet of things:
* On-body,
 Chemical,
* Implantable
* Deployable,
 All your digital exnaust
* Persistent user interface,
* Monitoring Health
* Moditying Behavior
*in Real-Time
« and in Context
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Mobile Health

Context
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Context in the 21¢ Century

From To
Point Point
of of
Care Need
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In 2018, Only 11% of Adults are Not Online

Women 12%
Men 11%
Black 13%
Hispanic 12%
White 11%
18-29 2%

30-49 3%

50-64 13%
65+ 34%
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<30K 19%
30K—49,999 7%
50K—74,999 3%
75K+ 2%
Less than HS 35%
Some HS 16%
Some College | 7%
College+ 3%
Urban 8%
Suburban 10%
| Rural 22%

Pew Research Center, January 3-10, 2018
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A talk in 3 parts: mHealth?3

Part 1. Monitoring

Part 2. Modeling

Part 3. Modifying
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M2FED: Monitoring & Modeling
Family Eating Dynamics
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Basic Premise:
We Don’'t Know Exactly What People Eat
Because we can’'t measure It.

USC

mHealth Collaboratory

USCDornsife
Center for Economic
and Social Research



Premise 1: Measuring dietary intake is the
‘wicked problem’ of obesity research

* Ask people
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dietary assessment

24-hour recalls by interviewer (NDSR) or online (Subar et al 2012)

Diaries: Paper, apps e.g. MyFitnessPal (Patel et al 2016), pictures (Boushey et al 2016)
Food frequency by questionnaire(Talegawkar et al 2015), by EMA (Bruening et al 2016)




Premise 1: Measuring dietary intake is the
‘wicked problem’ of obesity research

* Ask people
* Observe people

Ahmad Z et al Proc IS&TISPIE 2014, Beltran et al, Proceedings, 2016,
In lab (Fisher et al, 2002), in field (Orrell-Valente et al, 2007)



Premise 1: Measuring dietary intake is the
‘wicked problem’ of obesity research

* Ask people
* Observe people

«Sense people
(wearables, deployables)

Samsung Inc. Family Hub™

LR E Thomaz et al 2015, Kalantarian et al. 2015, R




Premise 1: Measuring dietary intake is the
‘wicked problem’ of obesity research

* Ask people

* Observe people
«Sense people

* Biological measures
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Premise 1: Measuring dietary intake is the
‘wicked problem’ of obesity research

* Ask people

* Observe people
«Sense people

* Biological measures
« Grab ‘small’ data

v QEE
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Premise 2: And even if we could be exact:
Messages about dietary intake fail.

« 2015 Dietary Guidelines for Americans
« Removes cholesterol

 Removes limit on dietary fats

 limited intake of healthful unsaturated fats, i.e. nuts, vegetable oils,
fish

* People don't know/remember what they ate
« Messages are confusing, shiffing, impersonal

« Measures and Messages don't take into account that
eating is a dynamic, embedded behavior

USCpgrgsifc Mozaffarian & Ludwig, JAMA 2015; 313, p 2421-2422 USC
enter for Economic mHealth Collaboratory




Family eating dynamics (FED)

* FED influence eating behaviors
* Mimicry, synchrony (Hermans et al, 2012)
* Modeling (Boutelle, Cafri, & Crow, 2012)
« Parenting styles (Birch, Fisher, & Davison, 2003, Lytle et al 2011)
* Mood (Peters, Kubera, Hubold, & Langemann, 2011)
* Food environment & food choice (Lytle et al., 2011

« FED can be changed through interventions that also
iImpact weight (Epstein, 1996, West et al., 2010)

» Unftil recently, FED were only measurable through
interviews, questionnaires or observation.

USCDornsife US C

Center for Economic
and Sa{:ale:mr:b mHealth Collaboratory




People as Complex Systems
Embedded within Complex Systems
Sensed Continuously in Context
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MZFED: monitoring & modeling fomily eating dynamics

= [dentify key contextual elements in the home relevant to family eating

= Cyber-physical system + Ecological Momentary Assessment (EMA)
= Detects bites/eating events, mood, spatial location; data that friggers EMA

@ i V B \\% ?y// . Eating RaAte over TimAe 3

_8
E
26
2 E
Storage M2FED Device | 24 - =
Manager | | Controller | Manager %2 —A—Al
P E go —A—-—wa—x— wem
| | E 15:00 15:30 14:00 14:30 16:00 16:30 17:00
Sensor Acoustic 0 0 0
Manager Processor yé
Base Station Family Mood Location
> ; Durlng Eahng Event During Eating Event
wave Microphone
RAeceivir Station Child 1 Kitchen Kitchen LvRoom
0 A A A o 4 &
; O OO Child 2 @ . Kitchen Kitchen Kitchen
Pressure Contact
Pads Sensors / / / Adult 1 @ Kitchen Kitchen Kitchen
Adult 2 @ Kitchen Kitchen LvRoom
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(cadlibrated in the lab, deployed in the wild)



M2FED System

Cloud

Base Station

R
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M2FED Monitoring System

TeamViewer
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Go to Home

Monitor:
v’ Hardware
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v’ Connectivity
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Mood detection via voice fraces

* Inifial algorithms developed on
existing emotion speech
datasets*

« 10 Ten families visited our lab

e 15-20 minute semi-structured
discussion sessions were video
recorded

« Moods were manudlly labeled as
the ground truth input for
algorithm development (inter-
rater reliability .70).

USC
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Eating detection using smartwatches

* Initial algorithm development:
data collected during ~ 2-
hour meals from 5 subjects
wearing Sony smart watches.

* 31 Individual in-lab structured
eating sessions,

* 12 unsfructured in-lab

e 6 unsfructured in-lab meols

« Overall accuracy (bites,

eating events) between 80%
-96%

USCDornsife USC
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Signal-Driven & Scheduled
Ecological Momentary Assessment

Trigger:
Sensed mood

Trigger:
Sensed eating event

Eating in the absence of
hunger

Self-regulation

Cause of stress,
anger, happiness,
sadness

.

ClosCnp

Rule-based - = Mindfulness
schedule . o

. . Trigger: Participant -
vigor, Fatigue, reported event or mood
Anxiety, positive Text, picture, or sound
affect recording



Ubiguitous measures

* Who is in the room (Smartwatch ID & Beacons)

* Opening of cabinets, drawers, refrigerator (Beacons)
« Speaker Identification (Trained algorithms from sound)
* Length of meal (Smartwatch)

« Speed of eating (Smartwatch)

'th Collaborator
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What we want to know about eating

Concurrent
Activities
Where (TV, phone use)
When Stress a
With whom anxiety Kitchen cabinet &
Length of event refrigerator access
Speed

Prior and Post

Eating in the i
Activities

absence of hunger
USC
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FED System Dynamic Model

Al angry tone +
Duration C1: EE-4
+ +
meed of eating
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Bite Mimicry

Mimicked bite (x;) = j takes a bite within x sec. after i takes a bite

—@ >  JO ®
Time 0:01 [0:02] 0:03|0:04]0:05]|0:06]|10:0710:08[0:09([0:10[0:117]0:12]0:13
P, bite© | X X X
P bite ® X X X
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mHealths3:
Monitor, Model & Modity Behavior

MODELING
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TBM

Health behavior models in the age of mobile
interventions: are our theories up to the task?

William T Riley, PhD," Daniel E Rivera, PhD? Audie A Atienza, PhD,> Wendy Nilsen, PhD,*
Susannah M Allison, PhD,> Robin Mermelstein, PhD®
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Our Current Theories are Static

\
Perceived
Competence .‘— i

One Way Ticket

|
Self-regulation

USCDornsife
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TBM

Building new computational models to support health
behavior change and maintenance: new opportunities
in behavioral research

Donna Spruijt-Metz, MFA, PhD," Eric Hekler, PhD; Niilo Saranummi, PhD;? Stephen Intille, PhD,*

llkka Korhonen, PhD,> Wendy Nilsen, PhD,® Daniel E. Rivera, PhD,? Bonnie Spring, PhD,” Susan Michie, PhD2
David A. Asch, PhD? Alberto Sanna, PhD,' Vicente Traver Salcedo, PhD,"" Rita Kukakfa, PhD,"

Misha Pavel, PhD?
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Transdisciplinary Treasure Hunt for Digital Blomarkers —
New variables from old/new data:

* New variables/indices/digital biomarkers
that can be discovered through a mash-

= /,Q up of measures
/ - — - « Which for which persone
! %  Variables in any fusion will
é\% - weigh heavier for some people,

5 - - change aft different speeds
FRRT it &@% « differ in frequency, messiness,
T missingness, relafionships to other vars.

» Personalizes adaptively as time-
sensitive new data comes in.
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Dynamic, Multiscale Model Requirements:
ldiographic vs. Nomothetic

Differences between Patterns within one individual
individuals

USC

USCDornsife
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Dynamic, Multiscale Model Requirements:
Learning and adaptive

OH REIRD! | FEEL
LIKE 1VE SEEN THAT

Ongoing

\measurement
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Dynamic, Multiscale Model Requirements:
Cocep’ruollyeeded, vet data driven

§ « Where are the useful signals in
£z the current noise?

« Semantically interesting patterns of
personal & social behavior

* A new search for meaningful
mechanisms

» Personalizes adaptively as time-
sensitive new data comes in.

NCEP NAM CONUS 20 km NAM_CONDS..., - y

USCDornsife  spryjjt-Metz et al TMB 2015, Hekler et al, AJPM 2016 USC
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Dynamic, Multiscale Model Requirements:
Multidimensional generalization spaces

Whene

Where?
«For whom?2
In which state2 < ..

*Which dose?
*Which particular interventione ™ sen

Self-Regulatory Skills

USCDornsife  Hekler, Michie, Pavel, Rivera, Collins, Jimison, Garnett, Parral, Spruijt-Metz,

ol AJPM 2016
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mHealths;
Monitor, Model & Modify
health-related behavior

Modifying
Just-In-Time, Adaptive Interventions (JITAIs)
(Nahum-Shani et al, Health Psych 2015)

Intensively Adaptive Interventions (lAls)
(Riley et al, Current Op Psych 2015)
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Adaptive Interventions: 5 Elements

1. Decision Points:

Times at which treatment options should be considered
based on patient information

2. Tailoring Variable:

Patient information used to make treatment decisions
3. Infervention Options:

Type/dose of freatment
4. Decision rules:

Linking tailoring variables to intervention options

An adaptive intervention includes multiple decision rules
5. Outcomes:

Proximal and Distal

Ndhum_ShOni mHm-[lt‘gglgatary
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Just In Time Adapftive Interventions

« A JITAl'ls an adapftive intervention thatuis:
 Delivered via mobile devices
* Anytime
* Anywhere
 When the person is in need and/orvulnerable
* When the person is receptive
* (Meaningful Moments)

(Nahum-Shani, Hekler & Spruijt-Metz, Health Psychology 2015; Heron &
Smyth, 2010; Kaplan & Stone, 2013; Riley et al., 2011)
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Learning algorithms: Meaningful moments
« Receptivity!
« Availability?
« Opportune momentss

e Threshold Conditions*
* In need and/or vulnerable
* Receptive and/or available
* Motivated and/or able

* What, when, where & for whom?e

1 Nahum-Shani, Hekler, Spruijt-Metz, Health Psych 2015
2Sharmin, Ali, Rahman, Bari, Hossain, Kumar, UbiComp ’14

e, ° Poppinga, Heuten, Boll, Pervasive Computing 2014 - USC
gt ‘Hekler, Michie, Spruijt-Metz et al AJPM 2016 mHealth Collaboratory




KNOWME Networks

e A suite of mobile, Bluetooth-enabled, wireless,
wearable sensors

* That inferface with a mobile phone and secure server
* TOo process data in real time,

» Designed specifically for use in overweight minority
youth

Emken et al, Journal of physical activity & health, 2012;

[SN®IDVISIIN Li ef al, IEEE frans. on neural syst. and rehab. engineering, 2010;
purcirsdll ThOtte et al, IEEE transactions on signal processing, 2011
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Your Activity Meter Q

I I] I Active Time in the
Last 60 Minutes

Each bar = 30 seconds

Sedentary Time 20 bars = 10 minutes
(since the last rese’r)\g 1”\\
[o£002]

mintes

El d Time :
Total Active i |Ime >0 !1\Bo’r’rerylndico’ror

Time Total Elapsed for Each Device

Time

Sedentary = lying down, sitting, sitting & fidgeting, standing, standing & fidgeting
Active = standing playing Wi, slow walking, brisk walking, running

S



Did SMS Prompts Directly Impact Subsequen’r

AcCtivity?
6000
5500 « Accelerometer
2500 counts were 1,066
£4000 counts higher
S3200 + in the following 10
1500 minute period
1(5)8§ « compared to when

SMS prompts were
not sent (p<0.0001)
® No Prompt ™ Prompt

USCDornsife USC
enter. omic
and Soc arch
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Thank you! Any questions?
Please stay connected!

= Context

Donna Spruijt-Metz,
dmetzQusc.edu
Also see our cool new website
http://mhealth.usc.edu
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