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Abstract

Scalar-on-function regression problems with continuous outcomes arise naturally

in many settings, and a wealth of estimation methods now exist. Despite the clear

differences in regression model assumptions, tuning parameter selection, and the in-

corporation of functional structure, it remains common to apply a single method to

any data set of interest. In this paper we develop tools for estimator selection and

combination in the context of continuous scalar-on-function regression based on min-

imizing the cross-validated prediction error of the final estimator. A broad collection

of functional and high-dimensional regression methods is used as a library of candi-

date estimators. We find that the performance of any single method relative to others

can vary dramatically across data sets, but that the proposed cross-validation proce-

dure is consistently among the top performers. Four real-data analyses using publicly

available benchmark datasets are presented; code implementing these analyses and

facilitating the application of proposed methods on future data sets is available in a

web supplement.
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1 Introduction

The problem of predicting continuous scalar outcomes from functional predictors has re-

ceived high levels of interest in recent years, driven in part by a proliferation of complex

datasets and by an increase in computational power. Although there are now many ap-

proaches to this problem, including several techniques for the popular functional linear

model and methods for a number of data-generating scenarios, it is rare for a practitioner

to apply more than one scalar-on-function regression method to any dataset. Doing so

would potentially yield improved predictions of outcomes or new insights into scientific

processes; indeed, the choice of regression model and estimation technique (a process we

will refer to as estimator selection) is important and can dramatically affect prediction of

outcomes and interpretation of results.

In this manuscript we develop approaches to facilitate the comparison and combina-

tion of many scalar-on-function estimation methods. We first focus on estimator selection,

or the choice of a single estimator from a large collection of candidates, and then on the

dynamic combination of approaches to yield an optimal ensemble estimator of the asso-

ciation between a scalar outcome and functional predictor. Our proposed approaches are

based on estimator selection through minimizing cross-validated loss (Breiman, 1996; Du-

doit and van der Laan, 2005; van der Laan and Dudoit, 2003; Wolpert, 1992), referred to

variously in the literature as model stacking and super learning. We adapt these strategies
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to the setting in which predictors are both high dimensional and spatially structured. Pub-

licly available software allows easy comparison and selection of methods for predicting

scalar outcomes from functional predictors.

Many approaches to scalar-on-function regression for continuous outcomes are now

available. In the context of the functional linear model (described below), techniques in-

clude functional principal components regression (Ramsay and Silverman, 2005) and par-

tial least squares (Reiss and Ogden, 2007), and penalized spline methods (Cardot et al.,

2003; Goldsmith et al., 2011; Marx and Eilers, 1999; James et al., 2009). Extensions of

the functional linear model include the functional generalized additive model (McLean

et al., pted), the functional additive model (James and Silverman, 2005), and single-index

regressions (Eilers et al., 2009). A point-impact model was proposed in (Lindquist and

McKeague, 2009) and a Bayesian hierarchical regression kernel method was developed

in (Woodard et al., ress). In addition, high-dimensional regression and machine learning

methods that are not specifically designed for structured functional data can nonetheless

be applied to such datasets. Such methods include ridge regression, lasso and elastic net

(Friedman et al., 2010), classification and regression trees (Breiman et al., 1984), boosting

(Freund and Schapire, 1995), random forests (Breiman, 2001), and support vector ma-

chines (Suykens and Vandewalle, 1999). These methods are not necessarily designed for

functional data, but could be applied to scores resulting from a truncated functional prin-

cipal component analysis or from other reduced rank basis representations to give hybrid

functional methods. Many of the approaches mentioned above are accompanied by soft-

ware implementations.

We are motivated by a desire to optimally predict continuous scalar outcomes from
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functional data, acknowledging that no one method will be universally superior, and

therefore pursue estimator selection and ensembling to compare and combine compet-

ing methods. To demonstrate the practical significance of this approach, we consider four

real-data examples in this manuscript. First we consider the standard Canadian weather

dataset, in which daily temperature measurements are used to estimate log annual pre-

cipitation at 35 monitoring stations. Next we analyze the Tecator dataset, which consists

of 215 near-infrared (NIR) absorbance spectra of meat samples used as predictors of fat

content of the sample. Third we analyze a diffusion tensor imaging (DTI) dataset, where

the goal is predicting a scalar measure of cognitive function from functional summaries

of intracranial white matter microstructure using 334 observations. Finally we examine

an additional NIR spectra dataset, which consists of 72 samples of cookie dough in which

the sucrose content is of interest. These examples illustrate several practical issues related

to the application of scalar-on-function regression methods, including the differential per-

formance of individual methods across datasets, the value of applying, selecting, and en-

sembling multiple methods, and the computational concerns in the proposed techniques.

All datasets considered are publicly available, and code implementing each analysis is

available as a web supplement.

The remainder of the manuscript is organized as follows. A broad selection of ap-

proaches for functional regression is discussed in Section 2, while estimator selection and

ensembling are detailed in Section 3. Real data analyses are presented in Section 4. We

close with a discussion in Section 5.

4



2 Existing Methods for Continuous Scalar-on-Function Regres-

sion

We observe data [Yi,Wi(s)] for subjects 1 ≤ i ≤ I where Yi is a continuous outcome and

Wi(s), without loss of generality assuming s ∈ [0, 1], is the functional predictor of interest.

In practice the curves Wi(s) are observed on a discrete grid {sij}Ji
j=1 that is potentially

sparse and subject-specific, and often observations are subject to measurement error. Pre-

processing steps such as smoothing or functional principal components analysis (FPCA)

can be used to reduce the effect of measurement error and obtain curves on a dense com-

mon grid {sj}Jj=1; in this exposition we will assume data in this form. This section reviews

existing methods for estimating the regression function ψ0(W (s)) = E [Y |W (s)]. While

we attempt to be thorough, this review is not exhaustive. Our discussion focuses only on

a single functional predictor although several of the approaches discussed allow multi-

ple functional predictors or the inclusion of non-functional covariates, both of which are

important in practice.

2.1 Functional Linear Model

The functional linear model (FLM) extends the standard multiple linear regression model

to functional predictors. Thus we assume

Yi =
∫ 1

0
Wi(s)β(s)ds+ εi (1)
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where εi ∼ N
[
0, σ2

]
and β(s) is the coefficient function. The FLM seeks to minimize

the sum of squared errors
∥∥∥Y − ∫ 1

0 W (s)β(s)ds
∥∥∥2

where ‖v‖ =
√
vTv. It is additionally

assumed, either implicitly or explicitly, that the coefficient function β(s) is smooth in some

sense over its domain; such an assumption respects the local structure inherent in the

predictor and avoids the problem of an ill-posed regression when J ≥ I . The functional

linear model is perhaps the most common approach for scalar-on-function regression, and

many techniques have been proposed to estimate the coefficient function β(s) based on

different assumed forms of this function. The coefficient function β(s) is an interpretable

object: locations with large |β(s)| are influential for the outcome, and the direction of the

association is given by the sign of the coefficient function.

Functional principal components regression (FPCR) is based on an FPCA decompo-

sition of the functional predictors (Ramsay and Silverman, 2005). Specifically, curves are

approximated using Wi(s) ≈
∑KW

k=1 cikφk(s) where ci = {cik}KW
k=1 are subject-specific prin-

cipal component loadings, and φ(s) and KW are respectively the shared orthonormal

basis functions and truncation lag estimated from the spectral decomposition of the co-

variance operator ΣW (s, t) = cov [Wi(s),Wi(t)]. FPCR uses the FPC basis functions to

express β(s) = φ(s)β, so that the integral appearing in (1) becomes
∫ 1
0 Wi(s)β(s)ds =∫ 1

0 (φ(s)ci)
T φ(s)βds = cTi β. In effect, FPCR poses a standard regression model in which

the FPC loadings ci are used as predictors and the parameters of interest are β; the trunca-

tion lag KW acts as an implicit tuning parameter that controls the shape and smoothness

of β(s). The effect of quadratic penalties on the regression coefficients β in FPCR is dis-

cussed in Randolph et al. (2012); the authors establish that the resulting estimates are

based on “partially empirical” basis functions that depend on the singular value decom-
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position of both the predictors and the specific penalty matrix, and conclude that when

prior information is available informative penalties can improve estimation. L1 penalties

for coefficients β are considered in Lee and Park (2011), which allows a variable selection

approach to choosing the most informative FPC basis functions for the outcome.

Broadly speaking, penalized spline approaches to the FLM expand β(s) using a rich

spline basis and impose explicit penalties to enforce smoothness in the coefficient func-

tion. These methods minimize
∥∥∥Y − ∫ 1

0 W (s)β(s)ds
∥∥∥2

+ λP (β(s)) where λ is a tuning

parameter that controls the amount of penalization and P (β(s)) is the penalty function.

Both Marx and Eilers (1999) and Cardot et al. (2003) express the coefficient function in

terms of a B-spline basis of size KB and impose a difference penalty on the B-spline co-

efficients. Thus β(s) = BKB
(s)β where BKB

(s) are the B-spline basis functions, and

P (β(s)) = βTP T
dP dβ where P dβ gives the d-th order differences of β; the tuning param-

eter λ is chosen via cross validation. For d = 2 this penalizes deviations of the coefficient

function from linearity, and for d = 0 this penalizes deviations from β(s) = 0. The FPCRR

method of Reiss and Ogden (2007) first projects the curves Wi(s) onto a B-spline basis

and then, using the smoothed predictors, carries out FPCR subject to the d-th order differ-

ence penalty. The tuning parameters KW and λ, which control the number of FPC basis

functions and penalty size respectively, are chosen using a nested m-fold cross validation

(λ can also be estimated using a mixed model within folds for KW ). In Goldsmith et al.

(2011), predictors are preprocessed using FPCA and the coefficient function is expressed

using a flexible spline basis. Spline coefficients are treated as random effects whose distri-

bution depends on the penalty structure; all parameters, including the tuning parameter

λ, are estimated using a mixed model framework.
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The penalized spline approaches discussed above focus on smoothness in the esti-

mated coefficient function β(s). An additional goal is the interpretability of the coefficient

function, which is often achieved by inducing sparsity; that is, forcing β(s) = 0 for a large

proportion of s ∈ [0, 1]. With interpretability in mind, James et al. (2009) introduces L1

penalties on the derivatives of the coefficient function so that P (β(s)) = ‖P dβ‖1. The

specific case of d = 0 is considered in Lee and Park (2011), who consider several penal-

ization schemes other than the lasso and Dantzig selector (both of which appear in James

et al. (2009)). A wavelet-based method for the FLM is considered in Zhao et al. (2012):

similarly to FPCR, both the predictors and coefficient function are expanded using a rich

orthonormal wavelet basis. Wavelet basis coefficients for β(s) are penalized using a lasso

penalty to enforce sparsity in the estimated coefficient function. Methods that promote

interpretability through enforcing sparsity, either in the coefficient function or its deriva-

tives, often use cross-validation to choose tuning parameter values.

2.1.1 Generalizations of the FLM

Several extensions of the FLM have been proposed to allow for more complex data gen-

erating mechanisms. Single index regression models for functional predictors are consid-

ered in Ait-Saı̈di et al. (2008) and Eilers et al. (2009). These approaches add a non-linear

index function to the traditional FLM:

Yi = f

(∫ 1

0
Wi(s)β(s)ds

)
+ εi. (2)
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In Ait-Saı̈di et al. (2008), a kernel estimator is used for f(·) conditionally on β(s) and

the optimal β(s) is chosen via cross-validation. In Eilers et al. (2009), β(·) and f(·) are

alternately held fixed while the other is optimized subject to smoothness constraints.

Modifications of projection pursuit regression (Chen, 1991) are considered for func-

tional predictors in James and Silverman (2005), Amato et al. (2006), and Ferraty et al.

(2013). As an example, James and Silverman (2005) proposes the model

Yi = β0 +
r∑

k=1

fk

(∫ 1

0
Wi(s)βk(s)ds

)
+ εi (3)

for an arbitrary r. Constraints ensuring the identifiability of βk(s) and fk(·) are needed

for both (2) and (3), and constraints preventing correlation of fk and fk′ are needed for

(3). In James and Silverman (2005), the authors expand predictors using a truncated prin-

cipal component expansion and consider a penalty P (β(s)) that reduces variation that is

orthogonal to the first PC basis functions, thereby penalizing variations in β(s) that do not

coincide with variations in the Wi(s). Amato et al. (2006) uses a wavelet decomposition

of functional predictors, and estimates the regression using minimum average variance

estimation. Ferraty et al. (2013) relaxes the distributional assumptions of previous meth-

ods and introduces a criterion for choosing the number of projections. Chen et al. (2011)

describe fully nonparametric extensions to estimate β(s) and f(·) in both (2) and (3).

A coefficient surface is estimated in the functional generalized additive model of McLean

et al. (pted), which poses the regression

Yi =
∫ 1

0
f (Wi(s), s) ds+ εi. (4)
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Here f(·, ·) is a bivariate function that allows the effect at location s to vary by the value

of Wi(s). Penalized tensor product B-splines are used to estimate the surface f(·, ·). Both

(2) and (4) include the FLM (1) as a special case.

A nonparametric kernel-based regression approach for functional covariates is de-

scribed in (Ferraty and Vieu, 2006; Febrero-Bande and Oviedo de la Fuente, 2012):

Yi =

∑
j 6=iK(h−1d(Wj(s),Wi(s)))Yj∑
j 6=iK(h−1d(Wj(s),Wi(s)))

+ εi, (5)

where K(·) is a kernel function, h is a tuning parameter and d(·, ·) is a suitable (semi-

)metric for function spaces. In the implementation we use, K(·) is an asymmetric normal

kernel and the metric is given by d(x(s), y(s)) =
√∫

(x(s)− y(s))2ds.

Recently, Ferraty and Vieu (2009) proposed using a collection of semi-metrics dj , j =

1, . . . , J , as learners in a boosting algorithm. In this method, regressions of the form in

(5) are applied sequentially, with subsequent models being fit to the residuals of previous

estimates; information from each regression is included additively in predicting outcomes

Y .

2.2 High-Dimensional Regression Methods

Because functional data are in practice observed discretely, methods that have been de-

veloped for high-dimensional regression can be applied to functional observations. Such

methods include penalized linear models (with ridge, lasso, bridge, elastic net or other

penalties), boosting (Freund and Schapire, 1995), classification and regression trees (Breiman

et al., 1984), random forests (Breiman, 2001), Bayesian variable selection (Mitchell and
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Beauchamp, 1988), generalized additive models and many others. In a few cases, these

methods have been proposed for use with functional data. An example is the point-impact

model described in Lindquist and McKeague (2009), which assumes that only a very small

number of locations contain information regarding the outcome. The point-impact out-

come model is

Yi =
J∑
j=1

βjWi(sj) + εi. (6)

where regression coefficients βj are estimated for each observed grid point in the domain

of Wi(·). This model is estimated using a lasso-type penalty on the discretized observa-

tions Wi(sj) and is particularly suitable for predictors that lack strong local structure.

It is important to note that methods based on treating observed data as an unstruc-

tured vector of covariates do not incorporate spatial structure in the estimates of regres-

sion coefficients, and therefore have very different interpretations from the approaches

described in Section 2.1. For the point-impact model the interpretive focus is on the dis-

crete collection of informative time points sj with non-zero βj rather than on a continu-

ous coefficient function β(s). While the use of some specific high-dimensional regression

methods for functional observations has been proposed, many methods (such as random

forests) have not to our knowledge been used for scalar-on-function regression.

Finally we note that the hybridization of functional and high-dimensional methods is

also possible by focusing on FPC loadings as the unstructured predictor vector. This can

effectively result in alternate methods for estimating the FLM, such as in the use of a lasso

penalty for FPC scores described in Lee and Park (2011). Some hybrid methods have been
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proposed but others are, to the best of our knowledge, novel.

3 Estimator Selection and Ensembling

While each of the methods in Section 2 focus on the problem of scalar-on-function regres-

sion, predictions made by these methods can be quite different. Fundamentally different

assumptions in the FLM, for instance regarding smoothness of β(s) or choices in how to

enforce sparsity, often result in very distinct coefficient function estimates. Methods based

on high-dimensional regression techniques pose a regression model that can be quite dif-

ferent from that given by the FLM. The relative performance of these methods in practice

depends on the unknowable true data generating mechanism.

In this Section we introduce the use of estimator selection and of ensembling for scalar-

on-function regression. Intuitively, we assess multiple models and estimating procedures

for their predictive performance on the data set of interest. In Section 3.1 we choose

the estimator with the lowest cross-validated prediction error; in Section 3.2 we combine

methods into an ensemble predictor. Methods described in this section are based on ap-

proaches for estimator selection by minimizing cross-validated loss (Polley and van der

Laan, 2010; Wolpert, 1992; van der Laan et al., 2007).

3.1 Estimator Selection by Minimizing Cross-Validated Loss

Given data [Yi,Wi(s)] for subjects 1 ≤ i ≤ I , we propose to estimate the regression func-

tion ψW0 (W (s)) = E [Y |W (s)] from a large collection of candidate estimators. This col-

lection can include any of those discussed in Section 2, but of course we are not limited
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to these methods. Our goal is to minimize the expected squared error loss ψW0 (W (s)) =

arg minψ E
{[
Y − ψW (W (s))

]2}, where the argument ψ represents distinct estimators for

the regression of scalar outcomes on functional predictors. Let C = {ψWk }Kk=1 represent

the collection of candidate estimators, and for each estimator let ψ̂Wk be the estimator fitted

to the observed data.

M -fold cross-validation is used to select the estimator with the minimum cross-validated

squared error prediction loss. Subjects i are partitioned into M exclusive and exhaustive

sets of roughly equal size. Each set and its complement in turn are the validation and

training sets V (m) and T (m), respectively, for m = 1, . . . ,M . For each split, all estima-

tors ψWk ∈ C are fit on the training data T (m) and applied to the validation data V (m),

giving predictions ψ̂Wk,T (m)(Wi(s)) for i ∈ V (m). Let nm be the size of V (m). The aver-

aged cross-validated loss CVavg(k) = 1
M

∑M
m=1

{
1
nm

∑
i∈V (m)

{[
Yi − ψ̂Wk,T (m)(Wi(s))

]2}}
is computed for each estimator ψWk ∈ C. We then select the estimator with the smallest

cross-validated loss by choosing k̂ = arg mink CVavg(k), and define the cross-validation

selected estimator ψ̂W
k̂

. Theoretical arguments in (van der Laan et al., 2006) show that the

cross-validation approach to estimator selection will perform asymptotically as well as

the oracle selector (which chooses the unknown estimator that minimizes loss under the

true data-generating mechanism).

3.2 Ensemble Prediction

The efficient combination of estimation methods can achieve better performance than

the selection of a single estimator. As above we are interested in minimizing the cross-

validated squared error loss, but we propose to do this by combining the estimators ψWk
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inC based on their individual performances to create an ensemble estimator. We develop

an approach based on existing ensembling techniques to unify and combine methods for

scalar-on-function regression.

To begin, construct vectors Zi =
{
ψ̂Wk,T (m(i))(Wi(s))

}K
k=1

where m(i) denotes the vali-

dation set such that i ∈ V (m). Thus Zi contains the predictions of Yi from each candidate

estimator based on training data that excludes subject i. Next, we estimate the regression

E [Y | Z] = ψZ0 (Z) of Y onto Z using observations (Yi,Zi). There are, of course, many

possible procedures to estimate ψZ0 ; a common choice is to use a linear model so that

E [Y | Z] = Zβ, possibly subject to sparsity or convexity constraints. Using a linear model

the ensemble estimate of ψZ0 (Z) is ψ̂Z0 (Z) =
∑K

k=1 β̂kψ̂k(W (s)), which is constructed using

estimators ψk fit to the full data. The estimator selection method in Section 3.1 is a spe-

cial case of the ensembler in which βk̂ = 1 and remaining coefficients are zero; a second

special case sets βk = 1
K for all k and thus assigns equal weight to all candidate estima-

tors. Asymptotic properties of the ensemble approach are discussed in van der Laan et al.

(2007).

In practice it is common to have a large and diverse collection of candidate estimators

ψWk (W (s)) inC that result in heterogeneous predictions of Y , as well as to have a diverse

collection of potential ensemblers to estimate ψZ0 (Z). This may necessitate a second level

of cross-validation to choose the optimal ensembler.
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4 Numerical Studies

We now implement the proposed estimator selection and combination methods on three

benchmark datasets. Of the potential methods for scalar-on-function regression, we limit

our library of candidate estimators to those with readily available R implementations.

Thus we consider FPCR fitted using a linear model on the first few FPC loadings max(KW ) =

15 (wrap.pclm) and FPCR using a spike-and-slab prior (wrap.spikeslabGAM); partial

least squares (wrap.plsreg2); several penalized FLM implementations, including meth-

ods using PC bases (wrap.fpcr), smoothing splines (wrap.flm, wrap.pfr, wrap.flirti)

and wavelet expansions (wrap.wnet); generalizations of the FLM (wrap.fgam, wrap.sisr);

non-functional methods (wrap.lasso, wrap.rf, wrap.gbm); and simple in-sample

and out-of-sample means (benchmark.is, benchmark.oos) used to gauge the improve-

ment in predictions based on functional covariates. We consider several ensemblers,

including the linear model (lm), the linear model with lasso penalty (lasso) and non-

negative least squares (nnls), random forests (rf) and choosing the single estimator with

minimum cross-validated loss (best). Table 1 lists each method along with a short de-

scription, the implementation source, and appropriate references.

For each data set, we partition the data into training and validation sets with 70% and

30% of the full data, respectively. We train all methods using the ten-fold cross-validation

procedure described in Section 3 using the training data only, and apply the resulting

prediction methods to the validation data. Because this process can be sensitive to the

original partitioning into training and validation datasets, we replicate the entire proce-

dure twenty times. We report relative root MSEs calculated using the validation set for all
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methods, where the relative RMSE is standardized to the best performer within a repli-

cate. Average computation time to conduct a full replicate using a laptop computer is

reported for each data set. All datasets are publicly available, and the code implementing

the analysis is published in a web supplement.

4.1 Application to Canadian Weather Data

We begin by analyzing a classic dataset in the FDA literature that contains daily tempera-

ture and rainfall observations over the course of a year. Data come from 35 geographically

diverse Canadian weather monitoring stations, and it is of interest to predict the log an-

nual precipitation from the observations of temperature. These data have been widely

analyzed as a test case for scalar-on-function regression methods James et al. (2009); Lee

and Park (2011); Ramsay and Silverman (2005). The data set appears in the R package fda

(Ramsay et al., 2012), available on CRAN. Daily temperature measurements for the thirty

five stations are shown in the left panel of Figure 1, sorted according to the log annual

precipitation.

The results of the analysis are shown in the right panel of Figure 1. There is substantial

heterogeneity in the performance of any particular method across replications of the par-

titioning and fitting procedure, potentially due to both the small sample size for training

estimators and the small validation sample for estimating MSEs. The wrap.flirti ap-

proach in this example underperforms compared to other FLMs, a possible result of the

assumed data generating mechanism or of the default tuning parameter choices of this

implementation. Most approaches seem to improve upon the benchmark mean estima-

tors, indicating that the functional covariates contain useful information in predicting the
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Method Description Implementation
(package:function)

References

Prediction Algorithms
wrap.pclm linear model on first K FPC load-

ings, optimalK estimated by 20-fold
bootstrap

our implementation Ramsay and Silverman
(2005)

wrap.spikeslabGAM Bayesian additive model with vari-
able selection on first KW FPC load-
ings

spikeSlabGAM:
spikeSlabGAM

Scheipl (2011); Scheipl
et al. (2012)

wrap.fpcr functional principal component re-
gression on first KW FPC loadings

refund:fpcr Crainiceanu et al. (2012);
Reiss and Ogden (2007)

wrap.flm REML-based functional linear
model with a locally adaptive
penalty

our implementation, us-
ing mgcv:gam

Wood (2011); Cardot
et al. (2003)

wrap.pfr penalized functional regression refund:pfr Crainiceanu et al. (2012);
Goldsmith et al. (2011)

wrap.flirti functional linear model with sparse
coefficient function

code downloaded from
author’s website

James et al. (2009)

wrap.plsreg2 penalized partial least squares ppls:
penalized.pls.cv

Krämer et al. (2008);
Krämer and Boulesteix
(2011)

wrap.wnet functional linear model in a wavelet
basis with elastic net penalty

refund:wnet Crainiceanu et al. (2012);
Zhao et al. (2012)

wrap.fgam functional additive model refund:fgam Crainiceanu et al. (2012);
McLean et al. (pted)

wrap.sisr REML-based single-index signal
regression with locally adaptive
penalty

our implementation, us-
ing mgcv:gam

Wood (2011); Eilers et al.
(2009)

wrap.psr CV-based single-index signal regres-
sion

R-script by Brian Marx
& Bin Li

Eilers et al. (2009)

wrap.lasso LASSO penalized linear model on
first KW FPC loadings

glmnet:cv.glmnet Friedman et al. (2010)

wrap.rf random forest on firstKW FPC load-
ings

randomForest:
randomForest

Liaw and Wiener (2002)

wrap.gbm Friedman’s gradient boosting ma-
chine applied to first KW FPC load-
ings

gbm:gbm Ridgeway (2013)

wrap.fregrenp non-parametric kernel-based func-
tional regression

fda.usc:fregre.np Febrero-Bande and
Oviedo de la Fuente
(2012); Ferraty and Vieu
(2006)

Ensembling Algorithms
lm simple linear model base:lm
lasso see wrap.lasso
nnls ensembling individual predictions

via non-negative least squares
nnls:nnls Mullen and van

Stokkum (2012)
rf see wrap.rf
svd LASSO model on the principal com-

ponents of the matrix of single algo-
rithm predictions

base:svd,
glmnet:cv.glmnet

Friedman et al. (2010)

best use predictions of best-performing
algorithm on training data

Table 1: Algorithms and ensembling methods used in the applications.
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outcome. Each replication took on average 186 seconds on a laptop computer.
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Figure 1: Canadian weather application data and results. Left panel shows daily tem-
perature measurements for the recording locations sorted and color-coded by log annual
precipitation. Right panel shows boxplots of relative root mean square errors on the test
set for the 20 replications. Relative root mean square error is defined as RMSE divided by
RMSE of the best (single or ensemble) algorithm for that replication. Boxplots for ensem-
ble methods in grey, for single algorithms in white. Note that some outliers for wrap.psr
have been cut off.

Several points follow from the analysis of the Canadian weather data. When com-

paring approaches for their predictive performance, it is important to repeat the analysis

for multiple partitions into training and validation sets to understand the variation in rel-

ative performance. In this example many methods, including the ensemble prediction

algorithms, have similar predictive performances. Finally we see that very similar mod-

els (here using the FLM) can have very different performances due to differing forms for

penalization and default choices for tuning parameters.
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4.2 Application to Tecator Data

Our second dataset focuses on the prediction of the fat content of meat samples based on

near-infrared (NIR) absorbance spectra. These data were originally used by Borggaard

& Thodberg (Borggaard and Thodberg, 1992) and have since appeared often in the func-

tional data literature (Eilers et al., 2009; Yao and Müller, 2010; Zhao et al., 2012). There

are 215 observations consisting of the fat content outcome and a 100-channel spectrum

of absorbances measured using a Tecator Infrared spectrometer. These data can be found

in the R package fda.usc (Febrero-Bande and Oviedo de la Fuente, 2012), available on

CRAN. The NIR spectra are are shown in the left panel of Figure 2.

The right panel of Figure 2 displays the results for the Tecator data analysis. Here

wrap.sisr clearly outperforms all other individual estimation approaches. Other ap-

proaches based on the functional linear model or FPCA work much less well than wrap.sisr,

but seem to improve upon the non-functional methods. One notable exception is wrap.fgam,

which for this dataset has very unstable performance across replications. The “pick the

best” selector correctly identifies the single index regression in each replication, while

the relative performance of the single index regression and other ensemble predictors

depends on the replication. Computation time for each replication was on average 447

seconds.

The Tecator data analysis emphasizes that the cross-validated selector will generally

identify a clearly superior estimator if one exists. Moreover ensemble prediction meth-

ods can often outperform a single method, although the relative performance depends

to some extent on the training and validation data. On the other hand, some ensemblers
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Figure 2: Tecator application data and results. Left panel shows NIR absorbance spectra
for the meat samples sorted and color-coded by their fat content. Right panel shows box-
plots of relative root mean square errors on the test set for the 20 replications. Relative
root mean square error is defined as RMSE divided by RMSE of the best (single or en-
semble) algorithm for that replication. Boxplots for ensemble methods in grey, for single
algorithms in white. Note that some outliers for the FGAM fits are cut off.

can be sensitive to the effects of a single poor prediction algorithm, as demonstrated by

the large outliers for several of these approaches. This may be alleviated by removing

the problematic single estimator (in this case wrap.fgam), but the sensitivity of ensemble

predictors is important to keep in mind.

4.3 Application to DTI Data

Multiple sclerosis (MS) is an immune-mediated disease that is associated with the inci-

dence of demyelinating lesions. Damage to the myelin sheath of white matter fibers can

disrupt the transmission of electrical signals in individual fibers and bundles of fibers, or

tracts, and thereby result in patient disability. Diffusion tensor imaging (DTI) is an MRI-
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based technique that traces the diffusion of water to assess white matter microstructure.

In this study we focus on the corpus callosum, a major collection of white matter tissue,

and use the fractional anisotropy measure of white matter microstructure parameterized

by distance along the tract as the functional predictor of interest; tracts are registered

across subjects using anatomical landmarks. We are interested in the association between

white matter in the corpus callosum and a scalar measure of cognitive performance us-

ing 334 observations. These data have been previously analyzed using several methods

Goldsmith et al. (2011); McLean et al. (pted); Randolph et al. (2012). The left panel of Fig-

ure 3 shows the tract summaries sorted according to the associated cognitive outcome.

This data set is available in the R package refund (Crainiceanu et al., 2012), available on

CRAN.

Results for the scalar-on-function regression analysis using the DTI data set are shown

in the right panel of Figure 2. Many methods have similar performances, although ran-

dom forests seem to outperform many functional data methods. The improvement com-

pared to the benchmark mean approaches is relatively modest. Several possibilities for

the failure to generate substantially improved outcome prediction are possible: the cog-

nitive function score is a proxy for a complex process and may be only loosely associated

with patient function, or the tract profiles may oversimplify a complex three-dimensional

structure and lose important anatomical information. Average computation time for each

replication was 650 seconds.

This data set illustrates three important points related to scalar-on-function regression:

i. there is little or no penalty on performance from using an estimator selection or ensem-

bling procedure, demonstrated by the reasonable performance of the selection and en-
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Figure 3: DTI application data and results. Left panel shows fractional anisotropy (FA)
curves along the right corticospinal tract ordered and color-coded according to the cog-
nitive performance outcome (PASAT score). Right panel shows boxplots of relative root
mean square errors on the test set for the 20 replications. Relative root mean square error
is defined as RMSE divided by RMSE of the best (single or ensemble) algorithm for that
replication. Boxplots for ensemble methods in grey, for single algorithms in white. Note
that some outliers for the SISR fits are cut off.

sembling by non-negative least squares or random forests; ii. of the single approaches the

best performer is random forests, which is a useful reminder that for scalar-on-function

regression non-functional approaches can perform well; and iii. the poor performance of

wrap.sisr (which was clearly the best method for use with the Tecator data) and the

reasonable performance of wrap.fgam (which performed poorly on the Tecator data) for

this data set reinforce that the use of a single method, even if it has performed well on

other data sets, can lead to very poor predictions.
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4.4 Application to Cookie Data

Our final example arises from a near infrared spectroscopy study of cookie dough samples

with the goal of assessing sucrose content. There are 72 spectra measured from 1100 to

2498 nanometers (nm) in 2 nm increments, giving functional predictors densely observed

on grids of length 700. This data set is contained in the R package ppls (Krämer and

Boulesteix, 2011), available on CRAN. Cookie dough spectra are shown in the left panel

of Figure 4, and the relative root MSEs across replications of the training/validation split

are shown in the right panel. For these data most individual methods provide substan-

tial improvements over benchmark means. However there is a lack of uniformity across

FLMs, in terms of both average performance and variability. As in Tecator data in Section

4.2 (the other NIR example) the better performers among individual methods tend to be

functional in nature. Average computation time across replications was 605 seconds.

Among the examples we consider, this dataset most clearly demonstrates the potential

usefulness of ensemble predictors – the random forest ensemble predictor tends to mod-

erately outperform competing approaches. Again we have an example of the instability

of single predictors across datasets. Here wrap.pfr is outperformed by all other FLMs,

while wrap.flirti is comparable to remaining methods; this reverses the relative per-

formance of these methods for the Canadian weather and DTI datasets. Finally we note

that while ensemble predictors tend to be among the better methods across datasets, their

relative ordering can vary. For this dataset, the random forest ensembler outperforms the

“pick the best” approach, while the opposite was true for the DTI dataset.

23



wavelength (nm)

1500

2000
su

ga
r c

on
te

nt
 (%

)
10

15

20

absorbance

0.5

1.0

1.5

2.0

2.5

1

2

3

4

5

6

7

pre
d.v
als
.sv
d

pre
d.v
als
.lm

pre
d.v
als
.la
ss

pre
d.v
als
.nn
ls

pre
d.v
als
.rf

pre
d.v
als
.be
st

wr
ap
.flm

wr
ap
.pf
r

wr
ap
.flir
ti

wr
ap
.wn
et

wr
ap
.pc
lm

wr
ap
.fp
cr

wr
ap
.sp
ike
sla
bg
am

wr
ap
.sis
r

wr
ap
.ps
r

wr
ap
.fg
am

wr
ap
.fre
gre
np

wr
ap
.pl
sre
g2

wr
ap
.la
sso
wr
ap
.rf

be
nc
hm
ark
.oo
s

be
nc
hm
ark
.is

re
la

tiv
e 

R
M

S
E

Relative RMSE

Figure 4: Cookie dough application data and results. Left panel shows NIR absorbance
spectra for the cookie dough samples sorted and color-coded by their sucrose content.
Right panel shows boxplots of relative root mean square errors on the test set for the 20
replications. Relative root mean square error is defined as RMSE divided by RMSE of the
best (single or ensemble) algorithm for that replication. Boxplots for ensemble methods
in grey, for single algorithms in white.

5 Concluding remarks

Recent years have seen intense development of new methods for scalar-on-function re-

gression, resulting in a plethora of estimation procedures representing a wide range of

model assumptions and estimation choices. Because of these disparities, the estimation

procedures can have dramatically different performances when applied to the same data

set. Despite the availability of multiple approaches, it remains common to use only a sin-

gle method for any real-data analysis. In this paper we have extended estimator selection

and ensembling to scalar-on-function regression; our publicly available code provides

tools to facilitate the implementation of the proposed methods to new data sets.
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Our applications to three benchmark data sets indicate some useful observations and

guidelines:

• Estimator selection and ensembling often outperforms any single estimation method
for a given dataset, and are more consistently among the best performers across data
sets than single estimators.

• Single estimation methods can have very different performances across data sets,
and the relative ordering of methods is not fixed.

• Comparison of multiple methods through cross validation increases computational
burden, but is reasonable for many situations.

• Cross validation reduces the reliance on user choices for estimator and model selec-
tion.

• Replication of the training/validation step illustrates variability of results depend-
ing on this split.

• Models based on very different assumptions regarding the data generating mecha-
nism can produce similar predictions.

In this manuscript we have focused on the specific problem of continuous scalar-on-

function regression with a single functional predictor, due to the commonality of this

context and the plethora of estimation techniques available. In practice, however, a wide

array of problems arise in functional regression. For continuous outcomes, it is com-

monly of interest to include both a functional predictor and standard scalar covariates,

often referred to as partial functional regression (Aneiros-Perez and Vieu, 2006, 2008), or

to include multiple functional predictors. Binary outcomes are regularly of interest, in

addition to other non-continuous scalar responses (Goldsmith et al., 2011). Functional-

response models have been considered in many applications; see, for example, Reiss and

Huang (2010), Ferraty et al. (2011, 2012) or Scheipl et al. (2013) for recent developments.
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In all of these cases, we consider it important to compare multiple estimation techniques

and believe the proposed framework suitable for this end.

A drawback of the proposed is the loss of interpretation from ensemble predictors,

particularly given that interpretability is traditionally considered an advantage of func-

tional regression methods. On the other hand, our final point above indicates that very

different model assumptions can provide similar fits; in such cases reliance on a partic-

ular model to provide scientific insights may be misleading and the interpretations of

several similar models should be considered. In the case that a single method uniformly

outperforms its competitors, it may useful to focus on that approach and use the inter-

pretations that are derived from its application. A second disadvantage of the proposed

method is the difficulty of obtaining inference for predicted values compared to individ-

ual model-based approaches. Inference based on targeted maximum likelihood may be

possible for ensemble predictors and is the topic of future work. Finally we acknowledge

the computational effort required to compare many methods through cross-validation,

and anticipate that this will be exacerbated as larger data sets, such as two- and three-

dimensional imaging studies, become more common and methods for scalar-on-image

regression more numerous.

6 Supplementary Materials

All supplementary materials are contained in a zipped Web Appendix available on the

first author’s website. Supplements consist of code used to access and analyze data de-

scribed in Section 4.
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