
Smooth Scalar-on-Image Regression via

Spatial Bayesian Variable Selection

Jeff Goldsmith1,*, Lei Huang2, and Ciprian M. Crainiceanu2

1Department of Biostatistics, Columbia University School of Public Health

2Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health

*jeff.goldsmith@columbia.edu

January 14, 2013

Abstract

We develop scalar-on-image regression models when images are registered multidimensional man-

ifolds. We propose a fast and scalable Bayes inferential procedure to estimate the image coefficient. The

central idea is the combination of an Ising prior distribution, which controls a latent binary indicator

map, and an intrinsic Gaussian Markov random field, which controls the smoothness of the nonzero

coefficients. The model is fit using a single-site Gibbs sampler, which allows fitting within minutes for

hundreds of subjects with predictor images containing thousands of locations. The code is simple and

is provided in less than one page in the Appendix. We apply this method to a neuroimaging study

where cognitive outcomes are regressed on measures of white matter microstructure at every voxel of

the corpus callosum for hundreds of subjects.

Keywords: Binary Markov Random Field; Gaussian Markov Random Field; Markov Chain Monte Carlo.

1 Introduction

Sustained exponential growth in computing power and the ability to store massive amounts of informa-

tion continuously redefines the notions of complexity and scale in reference to modern datasets. The
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increased interest in functional data analysis over recent years is largely a response to this trend. In the

functional paradigm, trajectories observed over a dense grid are the basic object of investigation and

are frequently used as predictors of scalar outcomes. However, studies now routinely collect multidi-

mensional, spatially structured images together with conventional scalar outcomes which require new

methods of analysis.

In this paper we consider a regression model relating a scalar response to a two- or three-dimensional

predictor image. Our motivation for this work comes from a neuroimaging study relating differences

in intracranial white matter microstructure to cognitive disability in multiple sclerosis (MS) patients. In

particular, we are interested in the relationship between damage to the corpus callosum, the major white-

matter bundle connecting the right and left hemispheres of the brain, and cognitive function in MS pa-

tients. From this study we have image predictors that are registered collections fractional anisotropy

values measured on three-dimensional images containing 38 × 72 × 11 = 30, 096 voxels that include the

corpus callosum. At each voxel, we observe a fractional anisotropy value that provides a subject-voxel

specific measure of white-matter tissue viability. Our data are illustrated in Figure 1, which shows the

three-dimensional image predictor observed for a single subject; similar predictors are observed for the

remaining 134 subjects in our dataset. On the left, the corpus callosum is shown in red and the collection

of voxels used as an image predictor is shown in a green box. On the right, the image predictor is dis-

played as a collection of parallel two-dimensional images, or slices, numbered from the most inferior to

the most superior with voxels shaded by their fractional anisotropy values (a border shows the outline of

the corpus callosum). Accompanying each predictor image is a scalar outcome that measures cognitive

function. Our goal in this paper is to investigate the relationship between the scalar outcomes and the

images using a single regression model.

Specifically, we pose a scalar-on-image regression model and estimate a smooth coefficient image of

the same size as the predictors. From Figure 1, the challenges inherent in posing a scalar-on-image regres-

sion model are apparent: first, the number of outcomes (subjects) is dwarfed by the number of predictors

(voxels); second, our predictors are observed on a complex, spatially structured multi-dimensional co-

ordinate system; and finally, due to the size of the data sets, methods must be carefully developed with

computational efficiency in mind. However, this study and the increasing number of others like it re-
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Figure 1: A single predictor image containing 30,096 voxels from the motivating neuroimaging applica-
tion. On the left, the corpus callosum in shown in red and the collection of voxels used as a predictor is
shown in transparent green. A single subject’s scan is shown on the right with slices numbered from most
inferior to most superior.

quire scalar-on-image regression models. In our proposed method to investigate the relationship between

scalar outcomes and image predictors, we postulate that most image locations are not predictive of the

outcome and that neighboring locations will have similar effects. Thus we use a latent binary indicator

image which dichotomizes image locations as “predictive” or “non-predictive,” and promote clustering

of these labels. A regression coefficient is estimated at each location; in the resulting coefficient image,

non-predictive locations have regression coefficients equal to zero and predictive locations have nonzero

coefficients that vary smoothly in space. We implement a fast and simple single-site Gibbs sampler in

which the choice between predictive and non-predictive states at a single location also determines the

regression coefficient for the current iteration. Code implementing the Gibbs sampler is available in a

short appendix.

Our approach to scalar-on-image regression combines prior distributions on the indicator and coef-

ficient images to impose sparsity and smoothness. First, we use an Ising prior distribution to induce

sparsity in the large number of image locations used as predictors and promote spatial contiguity in pre-

dictive regions by spatially smoothing the probabilities of the latent binary indicator image. Next, an

intrinsic Gaussian Markov random field (MRF) prior distribution is used to smooth the nonzero regres-

sion coefficients. At each image location the binary choice between “predictive” and “non-predictive” is

based on smoothness constraints from the prior distributions and the relative contributions of zero and

nonzero regression coefficients to the outcome likelihood. Our single-site Gibbs sampler produces sam-
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ples from the joint conditional distribution of the latent indicators and regression coefficients, providing

insight into the variability of the estimates. Although our model was designed with the neuroimaging

study in mind, the methods apply generally.

Latent binary indicator variables have been used extensively to induce sparsity in regression coeffi-

cients in the literature. Mitchell and Beauchamp (1988) used an indicator map to induce a “spike and slab”

structure in the regression coefficients, and George and McCulloch (1993) introduced the use of a Gibbs

sampler to sweep over the parameter space. Smith and Kohn (1996) proposed marginalizing over the re-

gression coefficients and outcome variance to obtain a posterior density of the indicator variables that de-

pends only on the observed data. Kohn et al. (2001) developed single-site Metropolis–Hastings samplers

that decrease the computation burden in the Gibbs sampler. Smith et al. (2003) and Smith and Fahrmeir

(2007) used the Ising prior distribution, a binary spatial Markov random field, to induce smoothness in

the latent binary indicator variables and identify active regions in fMRI studies; Li and Zhang (2010) ex-

plored the impact of the Ising hyperparameters on the number of nonzero regression coefficients, paying

particular attention to the transition between small and large models. Regression parameters are typically

estimated for locations at which the posterior probability of being predictive survives a threshold or by

using Bayesian model averaging. Previous work does not impose smoothness in the regression coeffi-

cients, which is implied to be an advantage in some settings (Li and Zhang, 2010). Additionally, these

proposed Gibbs samplers grow in computational burden with the square of the number of predictive

locations due to a step involving matrix determinants; this makes their application impractical in truly

high dimensional cases, such as in our application. The Metropolis–Hastings algorithm used by Smith

and Fahrmeir (2007) reduces the frequency with which this step is performed, but does not resolve the

quadratic increase in computation time.

Traditionally, the use of latent indicator variables was limited to selecting few influential covariates

among many (Ishwaran and Rao, 2005) and to knot selection in semiparametric regression models (Smith

and Kohn, 1996; Denison et al., 1998; Kohn et al., 2001). More recently, Smith et al. (2003) and Smith

and Fahrmeir (2007) consider a series of many spatially linked linear regressions arising in fMRI data.

In this setting, a small linear regression model is proposed at each of many locations on a lattice; the

outcomes vary from location to location, but the predictors are the same in each model. The individual
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regressions are spatially linked through the inclusion or exclusion of individual predictors. Although it is

in three dimensions, the fMRI setting is quite different from our application in that we consider a single

regression model with a large, spatially structured three-dimensional covariate rather than a spatially

organized collection of simpler linear models. Li and Zhang (2010) employ spatial variable selection in

a classic genomics dataset to smooth the binary indicators in a single regression with a one-dimensional

covariate, but do not impose smoothness in the nonzero regression coefficients.

The formulation of our problem is linked to the functional regression framework, which is a useful

tool for conceptualizing large, spatially structured predictors with associated scalar outcomes. Standard

techniques in functional data analysis include principal components decompositions for dimension re-

duction and penalized spline basis expansions to estimate coefficient functions (Ramsay and Silverman,

2005; Goldsmith et al., 2011a). Both tools are used by Reiss and Ogden (2010) to develop functional

principal components regression (FPCR), a state of the art method for estimating the parameters in a

scalar-on-image regression model with two-dimensional image predictors which could, in principle, be

extended to higher dimensions. We avoid the functional approach for three reasons: i.when the true coef-

ficient image is sparse, penalized spline expansions over-smooth regions of influence and under-smooth

elsewhere; ii. in higher dimensions, spline bases become analytically and computationally difficult to use;

and iii. data reduction techniques can exclude information that is important in explaining the outcome of

interest. Additionally, these methods have not been extended to the three-dimensional setting and their

scalability is unclear. A simulation-based comparison of the proposed Bayesian variable selection method

and the functional data approach described in Reiss and Ogden (2010) is given in Section 3.

The rest of this paper is organized as follows. Section 2 details the proposed approach to scalar-on-

image regression. Simulations motivated by our real-data context are presented in Section 3; the neu-

roimaging application is presented in Section 4. We conclude with a discussion in Section 5. Theoretical

results are given in Appendix A. Code implementing our Gibbs sampler is available in Appendix B; full

code for the simulations is part of a web supplement. Additional simulation results are provided in Ap-

pendix C.
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2 Methods

2.1 Scalar-on-Image Regression Model

Assume that for each subject 1 ≤ i ≤ I , we observe data of the form {yi,wi,Xi} where yi is a scalar

outcome,wi is a vector of scalar covariates andXi is an image predictor measured over a lattice (a finite,

contiguous collection of vertices in a cartesian coordinate system). We formulate the scalar-on-image

regression model

yi = w
T
i α+Xi · β + εi (1)

where α is a fixed effects vector, β is a collection of regression coefficients defined on the same lattice

as the image predictors, Xi · β denotes the dot product of Xi and β, and εi
iid∼ N

[
0, σ2ε

]
. Our goal is to

estimate the coefficient image β assuming that: i. the signal in β is sparse and organized into spatially

contiguous regions; and ii. the signal is smooth in non-zero regions. To this end, we also introduce a

latent binary indicator image γ that designates image locations as either predictive or non-predictive.

Notationally, let βl and γl be the lth image location (pixel or voxel) of the images β and γ, respectively,

and β−l and γ−l be the images β and γ with the lth location removed. Also let δl be the neighborhood

consisting of all image locations sharing a face (but not a corner) with location l; on a regular lattice in

two dimensions, δl will contain up to four elements. Let X·l be the length I vector of image values at

location l across subjects: XT
·l = [X1,l, . . . , XI,l]. Similarly, let X ·(−l) be the collection of images with the

lth location removed. We assume that images have been de-meaned, so that the average of each XT
·l is

zero. Let X · · β be the length I vector consisting of the dot product of each image predictor Xi and with

β: (X · · β)T = [X1 · β, . . . ,XI · β]. Finally, we define w to be the matrix with rows equal to wT
i

2.2 Parameter Estimation using Single-Site Gibbs Sampler

A combination of Ising and Gaussian MRF priors are used to induce sparsity, spatial clustering and

smoothness in the estimate of β. These priors allow location-specific conditional distributions used in

the construction of a single-site Gibbs sampler.

First, we define the latent binary indicator image γ so that βl = 0 if γl = 0 and βl 6= 0 if γl = 1; defined
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in this way, γ separates the regression coefficientsβ into predictive (nonzero) elements and non-predictive

(zero) elements. An Ising prior is used for γ, so that

p(γ) = φ(a, b) exp

a · γ +
∑
l

∑
l′∈δl

blI (γl = γl′)


 (2)

where φ(a, b) is a normalizing constant. The parameters of the Ising distribution a and b control the

overall sparsity and interaction between neighboring points, respectively. We fix a and b to be constants

(a, b) over all image locations chosen via the cross-validation procedure described in Section 2.5.

Next, we use a Gaussian MRF prior for the predictive regression coefficients. Let

[
βl | γl = 1,β−l,γ−l

]
∼ N

[
βδl , σ

2
β/dl

]
(3)

where βδl =

∑
l′∈δl

βl′γl′

dl
is the average taken over the neighboring regression coefficients and dl is the

number of elements in δl. This specification leads to the posterior conditional distribution

[
βl | y, γl = 1,β−l,α

]
∝ [y | β, γl = 1,α]

[
βl | γl = 1,β−l

]
∼ N

[
µl, σ

2
l

]
(4)

where

σ2l =

(
1

σ2ε
XT
·lX·l +

dl
σ2β

)−1

µl = σ2l

{
1

σ2ε

(
y −w·α−X ·(−l) · β−l

)T
X·l +

dl
σ2β
βδl

}
(5)

are the location-specific posterior mean and variance. Selection of the tuning parameters σ2ε and σ2β is con-

sidered in Section 2.5. Using the Ising and Gaussian MRF priors, we have the site-specific joint posterior

distribution of (γl, βl) given by p
{
(γl = 1, βl = β∗) | y,β−l,γ−l

}
= 1

1+gl
with

gl =
p
{
(γl = 0, βl = 0) | y,γ−l,β−l

}
p
{
(γl = 1, βl = β∗) | y,γ−l,β−l

}
=

p(y | βl = 0,β−l) · p(βl = 0 | γl = 0) · p(γl = 0 | γ−l)
p(y | βl = β∗,β−l) · p(βl = β∗ | γl = 1) · p(γl = 1 | γ−l)

. (6)
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Thus, at each image location the joint posterior distribution of the latent binary indicator and regression

coefficient is a Bernoulli choice that accounts for prior information through the Ising and MRF distribu-

tions as well as the relative impact of a zero and nonzero regression coefficient on the outcome likelihood.

Our full model is given by

yi ∼ N
[
wT
i α+Xi · β, σ2ε

]
βl ∼


δ(0), if γl = 0

N
[
βδl , σ

2
β/dl

]
if γl = 1

γl ∼ Ising[a, b] (7)

where δ(0) is a point-mass at zero. The Ising prior constrains that there are relatively few nonzero re-

gression coefficients and that they are organized into contiguous regions, while the Gaussian MRF prior

ensures that coefficients vary smoothly in space. As desired, this combination allows our method to en-

force sparsity and smoothness in the coefficient image. Moreover, the Bernoulli choice between zero and

nonzero coefficients at each image location depends on the posterior probability (6); the calculation of this

probability is straightforward and computationally efficient, as discussed in Section 2.4.

Next, we consider the placement of our method relative to others appearing in the literature. As

noted in the Introduction, a functional data approach to the regression of scalars on two-dimensional

images has been proposed by Reiss and Ogden (2010), but it is unclear how well this approach will scale

to higher dimensions. Our methods are related to the Bayesian variable selection literature through the

use of a latent binary indicator image, the Ising prior and a single-site Gibbs sampler (see Smith and

Fahrmeir (2007) and Li and Zhang (2010) for recent work). These methods propose an exchangeable prior

distribution on nonzero coefficients, but do not impose smoothness in the coefficient image. Further, these

methods marginalize over the regression coefficient distribution to obtain a posterior probability p(γl =

1 | y,γ−l) that does not depend on β, rather than considering the joint distribution of these parameters.

After obtaining marginal estimates of the binary indicator image, estimated regression coefficients are

given by averaging E[β | y,γ], the posterior expected value of the coefficient image conditioned on the

binary indicator after each iteration of the Gibbs sampler. Because they use only the expected value of the
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regression coefficients at each iteration, these methods may ignore some of the variability in the regression

coefficients. Marginalization over the regression coefficients also adds complexity to the calculation of the

location-specific posterior probability of the binary indicator; see Section 2.4 for a comparison of single-

site Gibbs samplers.

2.3 Theoretical Properties

We now consider the theoretical implications of the model specification in (7). First, we note that the

location-specific prior distributions p(γl | γ−l) and p(βl | γl = 1,β−l,γ−l) satisfy the conditions of the

Hammersley-Clifford theorem and therefore the existence of joint prior distributions p(γ) and p(β | γ) is

guaranteed. Next we consider conditions under which the prior distribution p(β | γ) is proper.

Theorem 1. If there exists at least one location l for which γl = 0, then p(β | γ) is proper.

A proof of Theorem 1 is given in Appendix A. Note that if the condition of Theorem 1 is not met, then

γl = 1 for all locations l. This implies that all image locations are predictive and that all regression coef-

ficients are nonzero. In particular, the prior distribution p(β | γ) for the regression coefficients simplifies

to the well-known conditional autoregressive prior (Besag, 1974; Gelfand and Vounatsou, 2003). Further,

because the binary indicator image γ is used to induce sparsity in the regression coefficients, there are

expected to be many locations l for which γl = 0 resulting in a proper joint prior distribution.

2.4 Single-Site Gibbs Sampling

We implement a single-site Gibbs sampler to generate iterates from the posterior distribution of (γ,β)

using the location-specific posterior probability (6). The computation time needed for each sweep over

the image space is linear in the number of locations l and does not depend on the number of nonzero coef-

ficients. Appendix B contains the full R implementation of the sampler for a two-dimensional coefficient

image.

At each location, we make a Bernoulli choice between the (γl, βl) pairs (0, 0) and (1, β∗), where β∗

is sampled from the posterior distribution
[
βl | y, γl = 1,β−l,α

]
in (4). Let β0 be the coefficient image

corresponding to the first pair and β1 be the coefficient image corresponding to the second pair. Following
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(6), the location-specific posterior distribution is p
(
(γl = 1, βl = β∗) | y,β−l,γ−l

)
= 1

1+gl
where

gl =
p(y | βl = 0,β−l) · p(βl = 0 | γl = 0) · p(γl = 0 | γ−l)
p(y | βl = β∗,β−l) · p(βl = β∗ | γl = 1) · p(γl = 1 | γ−l)

(8)

= exp

[
− 1

2σ2ε

{
(y −w·α−X · · β0)T (y −w·α−X · · β0)− (y −w·α−X · · β1)T (y −w·α−X · · β1)

}
+

dl
2σ2β

(β∗ − βδl)
2 − a+ b

∑
l′∈δl

{I(γl = 0)− I(γl = 1)}

 ·
√

2π
σ2β
dl
.

The quantity above illustrates the factors used to distinguish predictive from non-predictive locations:

first, the difference in residual sum of squares comparing the nonzero coefficient β∗ to a zero coefficient;

and second, the conditional probability for the latent binary indicator based on the Ising distribution.

The computational cost involved in the calculation of the dot products X · · β appearing in (8) can be

significantly reduced by noting that most of the operation does not change from location to location: we

only need to compute XT
·l β
∗
l to determine the change in X . · β comparing the current location to the

previous location. Thus, the Gibbs sampler consists of simple operations which can be quickly executed,

and whose computation time does not vary based on the number of nonzero coefficients in β. The fixed

effect vector α is updated after the sweep over all image locations l. A straightforward R implementation

of the Gibbs sampler to sweep over the latent binary indicator and coefficient images is available in its

entirety in a short appendix.

For comparison, Li and Zhang (2010) provides a detailed discussion of the single-site Gibbs sampling

scheme used in the marginalizing variable selection methods discussed in Section 1. The most computa-

tionally expensive step in these samplers is inverting and calculating the determinant of a pi × pi matrix,

where pi is the number of nonzero coefficients in the model at the ith iteration. The matrix inverse is cal-

culated using a Cholesky or other low-rank update to a matrix available at the previous iteration. In our

application, the number of nonzero coefficients was between 5,000 and 8,000 after each sweep of the coeffi-

cient image, making this computation impractical. Smith and Fahrmeir (2007) use a Metropolis-Hastings

step based on the prior for γ to reduce the number of times this step must be carried out. However,

two primary issues are that i. the computation time needed for the matrix calculations grows with the

square of nonzero coefficients, making large models computationally prohibitive; and ii. to boost com-

putational efficiency this step is implemented in FORTRAN, which can hinder the use of these methods on
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new datasets.

2.5 Tuning Parameters

In calculation of the location-specific posterior activation probability (8), σ2ε determines the impact of the

change in the outcome likelihood on the overall activation probability. Similarly, in the posterior distri-

bution of active regression coefficients (4), the parameter σ2β is important in determining the posterior

mean and variance. Finally, the parameters (a, b) in the Ising prior control the overall sparsity and the

degree of smoothing in the activation probabilities. Together, a, b, σ2ε and σ2β largely influence the shape

and sparsity of the estimated coefficient image, and are therefore referred to as tuning parameters.

To select these parameters, we use a five-fold cross validation procedure. That is, we divide our data

into five randomly selected groups and choose the collection (a, b, σ2ε , σ
2
β) that minimizes the quantity

5∑
i=1


∑

k∈Group
i

(yk − α̂−Xk · β̂)2

 (9)

where α̂, β̂ are estimated in each fold without using data from Groupi. This procedure increases the

amount of computation time needed for our method, but provides a measure of the predictive power of

the resulting coefficient image.

It is important to note that while σ2ε is nominally the outcome variance, it acts much more as a smooth-

ing parameter. Because the number of image locations is large, no single location contributes greatly to

the dot product X · β. In the calculation of the posterior activation probability (8), this has the effect that

the Ising prior probability overwhelms the contribution of the outcome likelihood unless σ2ε is artificially

low. The choice of σ2ε is important in controlling under- and over-fitting: a choice that is too small exag-

gerates the effect of each voxel and leads to over-fitting and little sparsity, while a choice that is too large

understates the effect of each voxel and leads to uniformly zero regression coefficients.

Several alternative approaches for tuning parameter selection exist. A fully Bayesian approach in

Smith and Fahrmeir (2007) imposes hyperprior distributions on the Ising parameters a and b, which are

estimated simultaneously in the MCMC simulation. Computation time is increased substantially in this

approach due to difficulty in calculating the normalizing constant for the Ising distribution; alternatively,
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the parameters can be set subjectively as in Smith et al. (2003). Similarly, one could impose hyperprior

distributions on the variances σ2ε and σ2y and estimate these parameters via MCMC. Typically one would

impose diffuse priors suitable for variance components; however due to the sensitivity of the result on

the choice of σ2ε noted above, we have found that a restrictive prior for σ2ε is needed and that the results

are sensitive to the choice of hyperparameters for this prior. Finally, we note that the Ising distribution

allows parameters a and b that vary over image locations. Smith and Fahrmeir (2007) therefore construct

anatomically informed parameters to induce sparsity more strongly in some regions. Absent scientific

justification for an anatomically informed prior distribution, we use constant Ising parameters a and b.

We end this subsection with guidance for finding a suitable range of parameter values for the cross

validation procedure. Typically we begin by selecting σ2ε due to its importance for over- and under-

fitting. The choice for this parameter depends on the scale of predictors and the signal strength, but

because unsuitable values lead to extreme behavior in the coefficient image a reasonable value can be

found. A useful starting range for the Ising parameter a is (−4, 0), where −4 strongly enforces sparsity

and 0 does not. For the Ising parameter b, a starting range is (0, 2) where 2 enforces agreement between

neighboring locations and 0 does not. The value for σ2β again depends on the scale of the predictors but

is often relatively low to induce spatial smoothness in regression coefficients.

3 Simulations

We demonstrate the performance of our method using both two- and three-dimensional predictors us-

ing simulations based on our neuroimaging application. In addition to the simulation results presented

here, Appendix C contains results for scenarios that demonstrate the effect of registration errors, larger

predictive regions, homogeneous regression coefficients, and predictive regions on the boundary of the

image.

To generate the predictors in the two-dimensional simulations, we first extract a 50 × 50 axial slice

image Xi from each of the registered patient scans in our dataset. After vectorizing these images, we

construct a collection of orthonormal principal components (PCs) φ = {φ1, . . . , φ50} with accompanying

eigenvalues λ = {λ1, ..., λ50}. For the simulated datasets, subject-specific PC loadings ci are generated

from a Normal distribution: ci ∼ N [0,diag(λ)]. These loadings are used to create simulated 50× 50 two-
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dimensional predictors usingXS
i =

∑50
k=1 cikφk, 1 ≤ i ≤ I , whereXS

i denotes the ith simulated predictor

by transforming the vectors back into 50×50 images. Figure 2 provides an illustration of the method used

to construct simulated predictor images. An analogous procedure is used to construct three-dimensional

predictors based on 20×20×20 regions extracted from the frontal cortex. From this procedure, we obtain

predictor images with 2500 and 8000 image locations for the two- and three-dimensional simulations,

respectively. Thus our simulated datasets retain many of the features of our application, including within-

subject spatial correlation and voxel-level variability.

Figure 2: Method used to generated two-dimensional predictors used in the simulation study. First, 50×50
images are extracted from full scans in our neuroimaging application. These images are decomposed into
principal components, and simulated predictors are generated by combining parametrically sampling PC
scores with the obtained PC images.

For the two-dimensional setting, we construct a coefficient image on the unit square using the densities

of bivariate Normal distributions. Let

U1 ∼ N


 .2

.3

 ,
 .0025 0

0 .0015


 and U2 ∼ N


 .4

.8

 ,
 .002 −.001

−.001 .001




with densities fU1 and fU2 respectively. The coefficient image β is given by β = .08fU1 − .05fU2 realized

on a 50 × 50 discretized grid to match the dimension of the predictors. In three dimensions, we use the

density of a Normal distribution on the unit cube, centered at (.25, .35, .65) and with covariance matrix
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diag(.01, .005, .01). Both coefficient images are show in Figure 3. Simulated outcomes ySi are given by

ySi = α + XS
i · β + εi where α = −10 and εi ∼ N

[
0, σ2ε

]
. We consider three levels for the variance

σ2ε : letting σ2y = Var
(
XS · β

)
be the sample variance of the simulated outcomes, we choose outcome

variances σ2ε =
1
3σ

2
y, σ2ε = σ2y, and σ2ε = 3σ2y, giving three signal-to-noise ratios σ2

y

σ2
ε

.

For each signal-to-noise ratio, we generate 500 datasets in the manner described above for both I = 100

and I = 500. In the first dataset only we use five-fold cross validation to select the tuning parameters

a, b, σ2ε , σ
2
β. Using these values, we fit model (1) on each simulated dataset and obtain estimated coeffi-

cient images β̂ that are the posterior mean of the sampled coefficient images. Because the five-fold cross

validation procedure is used only on the first dataset the results may not be fully representative of the

proposed method. For each fit, the coefficient image β is initialized to zero. We use 250 iterations of

the Gibbs sampler and discard the first 100 as burn-in. To provide a comparison for our method, we fit

the scalar-on-image model using the functional approach (FPCR) of Reiss and Ogden (2010) discussed in

the Introduction and using a Bayesian variable selection approach that imposes an exchangeable prior

distribution for the regression coefficients [βl | γl = 1]
iid∼ N

[
0, σ2β

]
(note that the functional approach is

currently implemented only for two-dimensional predictor images). As with the proposed approach, all

tuning parameters for these methods are estimated using the first dataset only.

To evaluate the estimated coefficient images, we use the mean squared error (MSE) separated by sig-

nal in the true coefficient image – regions in which |β| < .05 are called “nonpredictive”, and remain-

ing regions are “predictive” – to provide insight into the method’s ability to accurately detect features

while inducing sparsity elsewhere. Thus we define MSE1 = 1
L1

∑
l∈predictive(β̂l − βl)

2 and MSE0 =

1
L0

∑
l∈non-predictive(β̂l − βl)

2 with L1, L0 as the number of predictive and non-predictive image loca-

tions.

Table 1 displays the average MSE taken over all simulated datasets, for each signal-to-noise ratio, sam-

ple size, and method (Gaussian MRF prior, exchangeable prior, and FPCR). For perspective on Table 1, in

Figure 3 we display estimated coefficient images with typical MSE1 and MSE0. Table 1 demonstrates that

our method provides good estimates of the coefficient image in predictive and non-predictive regions.

Additionally, the use of a Gaussian MRF prior to impose smoothness in regression coefficients provides

substantially smaller MSE in predictive regions, typically with the same or smaller MSE in non-predictive
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I = 100 I = 500
σ2y/σ

2
ε = 3 1 1/3 3 1 1/3

GMRF - 2D
MSE1 0.775 1.263 2.805 0.377 0.605 1.062
MSE0 0.003 0.027 0.026 0.001 0.005 0.005
Computation 94.8 93.2 96.2 151.0 151.5 156.2

EX. - 2D
MSE1 1.461 2.293 3.698 0.910 1.224 1.800
MSE0 0.015 0.015 0.018 0.002 0.005 0.007
Computation 81.7 78.2 78.6 136.1 136.5 136.7

FPCR - 2D
MSE1 1.835 2.482 3.408 1.261 1.475 1.953
MSE0 0.082 0.079 0.063 0.074 0.079 0.083
Computation 0.5 0.5 0.4 0.8 0.7 0.8

GMRF - 3D
MSE1 0.546 0.797 1.151 0.320 0.402 0.599
MSE0 0.002 0.006 0.015 0.000 0.001 0.005
Computation 328.2 339.4 338.5 550.3 549.6 551.7

EX. - 3D
MSE1 0.983 1.218 1.460 0.620 0.809 1.078
MSE0 0.006 0.010 0.020 0.003 0.005 0.010
Computation 286.4 285.3 285.2 490.9 489.7 494.1

Table 1: Average mean squared error separated by true predictive and non-predictive location, signal-
to-noise ratio, sample size, predictor dimension, and estimation technique (“GMRF” labels the Gaussian
MRF prior, “EX” labels the exchangeable prior, and “FPCR” the functional approach). Average computa-
tion time (in seconds) to fit the model is also shown.

regions. Visual inspection of estimated coefficient images in Figure 3 shows that the goals of sparsity

and smoothness are achieved in the estimated coefficients, and confirms that typical estimates accurately

recreate the true coefficient image. Results for the FPCR approach are as expected: because smoothness

is induced over the full coefficient image using a penalized spline expansion, we observe over-smoothing

of the true features and under-smoothing of the non-predictive regions which results in higher MSEs. An

interesting consequence of our simulation design is apparent in the estimated three-dimensional coeffi-

cient: due to correlation in the simulated predictors resulting from structure in the principal components,

the location of the predictive region is somewhat off-center.

To assess the ability of our method to discern between predictive and non-predictive regions, we use

the posterior probability of an image location being declared predictive. Specifically, an image location

l is defined to be predictive if the posterior mean of γl > .05. Table 2 provides the true positive and

true negative rates for each of our simulation designs; from this table, we see that our method accurately
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I = 100 I = 500
σ2y/σ

2
ε = 3 1 1/3 3 1 1/3

GMRF - 2D
True Pos. 0.680 0.627 0.417 0.743 0.689 0.601
True Neg. 0.990 0.969 0.982 0.989 0.982 0.989

EX. - 2D
True Pos. 0.535 0.428 0.294 0.635 0.561 0.473
True Neg. 0.955 0.968 0.974 0.975 0.970 0.973

GMRF - 3D
True Pos. 0.589 0.499 0.380 0.672 0.653 0.584
True Neg. 0.992 0.987 0.981 0.996 0.993 0.986

EX. - 3D
True Pos. 0.558 0.441 0.349 0.705 0.623 0.530
True Neg. 0.956 0.958 0.950 0.959 0.958 0.949

Table 2: True positive and true negative rates for the identifying predictive regions in the estimated coef-
ficient image.

identifies non-predictive regions in the true coefficient image, and typically discerns predictive regions as

well. Qualitative inspection of the estimated coefficients shows that many of the false negatives occur at

the boundary of predictive regions: at these locations, the true coefficient value is typically small enough

that its signal is overwhelmed by the sparsity induced by the Ising prior distribution. In three dimensions,

the off-centeredness of the estimated coefficient image noted above also contributes to the relatively low

true positive rate. Of course, changing the threshold used to define predictive regions will affect the

values in Table 2; a lower threshold will increase the true positive rate and decrease the true negative

rate. Because the FPCR approach does not induce sparsity in the coefficient image there is not a suitable

definition for true positive and true negative rates, and it is omitted from Table 2. As is expected, the

accuracy of our method (both in terms of MSE and in terms of true positive and negative rates) increases

as the sample size gets larger and as the signal-to-noise ratio rises, but even for the smaller sample sizes

and lower ratios we obtain reasonable estimates.

Finally, we include in Table 1 the average computation time needed to fit the scalar-on-image model

using each of the three techniques. Both of the Bayesian variable selection methods have computation

time that is substantially higher than the functional data approach; the use of the Gaussian MRF prior

somewhat increases the computational burden of the sampler compared to the exchangeable prior. This

penalty is primarily due to the slightly elevated frequency of nonzero coefficient estimates, which raises
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the time spent writing to disk. However, we are able to obtain coefficient estimates within minutes for

any simulation scenario considered. Because computation times will differ based on the system used,

these values may change in practice and should be used only as a guide.

Figure 3: Plot of typical estimated coefficient images from the two- and three-dimensional simulation
studies, along with the MSE1 and MSE0 values and true positive and negative rates associated with each
estimate. The two-dimensional predictor is shown in the form βl = β(x, y).

4 Application

Recall our application to a study relating cognitive disability in multiple sclerosis patients to diffusion ten-

sor images. MS is an immune-mediated disease that results in damage to the myelin sheath surrounding

white matter axons, which are organized into bundles or tracts. Because myelin is a protective insula-

tion that allows the fast propagation of electrical signals, damage to this sheath disrupts neural activity

and can result in severe cognitive and motor disability in affected individuals. To quantify white mat-

ter properties, we use diffusion tensor imaging, a magnetic resonance imaging technique that produces

detailed images of white matter tissue by tracing the diffusion of water in the brain (Basser et al., 1994,

2000; LeBihan et al., 2001; Mori and Barker, 1999). The demyelination in MS patients occurs primarily
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in localized lesions, although some degeneration is distributed throughout white matter tracts. Recent

work has demonstrated that accounting for the spatial variation in tract properties improves the predic-

tion of disability compared to using average properties taken over the full tract length (Goldsmith et al.,

2011b). However, this work was based on one-dimensional functional summaries of white matter tracts

rather than the true three-dimensional anatomical structures. To more completely investigate the rela-

tionship between white matter properties and patient outcomes we use a regression model that takes

high-dimensional, spatially organized images as predictors.

We focus our attention on the Paced Auditory Serial Addition Test (PASAT), which provides a score

between 0 and 60 with higher scores indicating better cognition, as an assessment of cognitive function.

We relate this score to the corpus callosum, a major collection of white matter fibers connecting the left

and right hemispheres of the brain. Damage to the corpus callosum in MS patients has previously been

linked to decreased cognitive performance (Ozturk et al., 2010).

Our dataset consists of PASAT scores, non-image covariates age and sex, and diffusion tensor images

of 135 MS patients; the diffusion tensor images are registered across subjects to ensure that image loca-

tions are comparable. Registration of images is important in that our regression model assumes that the

coefficients are common across subjects; although no registration technique is perfect, major structures

(such as the corpus callosum) can be reasonably aligned across subjects. The images provide fractional

anisotropy (FA) measures at many voxels – FA is a measure of water diffusion that is indicative of white

matter viability. The images consist of 38× 72× 11 voxels containing the corpus callosum, which results

in roughly 30,000 image locations that potentially predict the scalar PASAT outcome. As shown in Figure

1, we note that these images also include voxels that are not within the corpus callosum. To analyze these

data, we first use a standard linear regression model with age and sex as non-image predictors. Next,

we implement our proposed scalar-on-image regression using the images as predictors and estimate a

three-dimensional coefficient image.

We use a five-fold cross validation procedure to select the tuning parameters a, b, σ2ε and σ2β in the

scalar-on-image regressions. For all possible combinations (a, b, σ2ε , σ
2
β) of tuning parameters, each of

which is examined on a grid over reasonable values, we fit the scalar-on-image regression model on the

training set using chains of length 150 and discarding the first 75 as burn-in. The parameter combination
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with the lowest residual sum of squares on the test set averaged over folds is chosen for use on the full

dataset. For the full analysis we use chains of length 2500 and discard the first 1000 as burn-in. The latent

binary and coefficient images are initialized to be zero at all locations.

Figure 4: Estimated coefficient image from the scalar-on-image regression analysis. On the left, nonzero
coefficients are shown in blue and the corpus callosum is shown in transparent red. On the right, the
coefficient image is overlayed on a subject’s scan for anatomical reference.

Figure 4 shows the estimated coefficient image from the scalar-on-image regression model. This Figure

shows that the coefficient image contains relatively few nonzero regions, that these regions are spatially

connected, and that the coefficients vary smoothly in space. From a scientific perspective, we note that

the non-zero coefficients are uniformly positive, indicating that subjects with above-average FA values

tend to have higher PASAT scores while those with below average FA tend to have lower PASAT scores.

Thus, as is expected, degradation of white matter in the corpus callosum is associated with decreased

cognitive performance measured by the PASAT score. Moreover, although the image predictors contain

voxels both within and without the corpus callosum, the regions of interest in the coefficient image are

largely contained within the corpus callosum, which is consistent with scientific expectations. In some

areas, the coefficient image appears to extend beyond the white matter. These are possibly driven by

registration errors in the images across subjects; other potential explanations are oversmoothing of large

effects and the correlation in adjacent image locations.

In Figure 5 are three plots showing the MCMC chains for coefficients at three image locations: one that

is predictive, one that is non-predictive, and one on the border between predictive and non-predictive

regions. The combination of Ising and Gaussian MRF priors leads to distinctive mixing patterns for the
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three chains. For the predictive location, mixing is driven by the Normal distribution of Gaussian MRF

prior. For the non-predictive location, the coefficient estimate is zero for most iterations, driven by the

sparsity induced by the Ising distribution. The border location displays a mixture of these two behaviors.

Figure 5: MCMC chains for regression coefficients at three image locations, one predictive, one non-
predictive, and one on the border between predictive and non-predictive regions.

In the cross-validation procedure, the average percent of variation in the PASAT outcome explained

by our model was 18.4% on the training set and 11.4% on the test set. This indicates some degree of

overfitting, which is not surprising given the complexity of the model and the relatively small test set

sizes. For the full analysis, the scalar-on-image regression model explains 17.3% of the outcome variance,

in line with the results of the cross-validation step. Meanwhile, the standard regression model that uses

age and sex as predictors explains only 1.7% of the outcome variance.

It may be surprising that the scalar-on-image regression explains only a small amount of the variabil-

ity in the outcome. However, there are at least three possible reasons for this weak association. First,

the PASAT score is a noisy measure of cognitive function, and is subject to many errors that cannot be

captured or controlled during testing. Indeed, multiple sclerosis patients with large differences in dis-

ease burden exhibit similar PASAT scores. A more sensitive measure of cognitive function could be more

strongly associated with FA values in the corpus callosum. Second, cognitive function is a complex sys-

tem, and while damage to the corpus callosum certainly contributes to overall patient disability, other

regions of the brain also play important roles. Thus, the corpus callosum alone may be insufficient to ac-

curately predict cognitive ability. Finally, potential misregistration of the predictor images could reduce

the interpretability of image locations across subjects. Because our model is specified at the voxel level,
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such errors would decrease the predictive performance of the regression.

Finally, we implement a standard approach to regression problems in which the predictor is an image.

In this voxel-wise regression, we perform a simple linear regression of the PASAT outcome on the FA

value at each voxel in the predictor image in turn; the p-values for the slope on FA are shown in Figure 6.

A comparison of this p-value image and the coefficient image in Figure 4 shows that the two predictive

regions identified by the scalar-on-image approach generally correspond to areas with small p-values in

the voxel-wise analysis. However, Figure 6 shows several regions of low p-values that do not appear as

predictive in the full regression model; additional analyses find that these regions are highly correlated

with those that are predictive, indicating that their low voxel-wise p-values may reflect confounding

rather than true association.

Figure 6: P-values resulting from a voxel-wise analysis of the application data, which poses a simple linear
regression of the PASAT on the FA value at each voxel in turn. P-values for the FA slope are overlayed on
a subject’s scan for anatomical reference.

Our proposed method has several advantages over the voxel-wise approach, including: i. estimating

regression coefficients for all locations simultaneously by including the entire image as a predictor; ii.

jointly modeling both the predictive status of each location and the regression coefficient through the

use of the latent binary and coefficient images; and iii. explicitly inducing spatial smoothness in the

posterior probabilities in the binary indicator image and the regression coefficients by posing the Ising

and Gaussian MRF prior distributions. Thus, while the voxel-wise regression strategy provides useful
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support for the results of our application, it lacks many of the features and insights provided by the more

complex approach we propose.

5 Discussion

Incorporating large, spatially structured image predictors in single regression models is a frequently en-

countered problem in complex data sets. This paper addresses the challenge of scalar-on-image regres-

sion in a way that produces smooth coefficient images with spatially contiguous predictive regions. Our

method combines Ising and Gaussian MRF prior distributions to achieve sparsity and smoothness in the

estimated coefficient. We examine the joint posterior distribution of the regression coefficient and a latent

binary indicator at each image location. Importantly, we develop a simple Gibbs sampler that avoids the

large matrix inversion that slows down related methods. Simulations indicate that the proposed method

performs well, both in terms of classifying image locations as “predictive” and “non-predictive” and in

terms of estimating the coefficient image, and demonstrate the usefulness of the Gaussian MRF prior over

an exchangeable prior in reducing the mean squared error of the estimated images. Finally, we consider a

neuroimaging application in which three-dimensional DTI scans of intracranial white-matter are related

to cognitive disability.

The proposed method has several limitations. As noted in our application, it is possible to overfit a

model at the expense of prediction on future data. This is not an uncommon issue when the number of

parameters vastly exceeds the number of subjects, as is the case in our current setting. The use of multi-

fold cross validation to select smoothing parameters may alleviate this problem, but overfitting will need

to be evaluated on an application-by-application basis. Our simulation study, which generates predic-

tors based on our neuroimaging application, demonstrates that the correlation in the image predictors

that is a hallmark of this data may complicate the identification of regions which influence the outcome.

Finally, our development assumes that the coefficient image is sparse, and it is currently unclear what

ramifications the sparsity assumption will have when it is inaccurate.

Future work may take several directions. The computational burden of the cross validation may be

relieved by the imposition of priors distributions on the tuning parameters. However, for σ2ε and σ2β, we

have found the overall model fit to be sensitive to the choice of hyperparameters, while the appropriate
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prior distributions for a and b is unclear; further work is needed to address the estimation of the tuning

parameters. Our development has not addressed the possibility of measurement error in the predictor,

which can be common in some settings. A joint model of the predictors and outcomes could resolve this

issue, but may be computationally expensive. Extending the methods to generalized regression models

is clinically important – in our application, the use of brain scans to distinguish multiple sclerosis cases

from healthy controls could aid in the earlier detection, diagnosis and treatment of disease. Finally, there

is a need for inferential tools to determine the statistical significance of estimated coefficient images.

6 Supplementary Materials

All supplementary materials are contained in a zipped Web Appendix available on the first author’s

website. Supplements include: A) theoretical results described in Section 2.3; B) R code for the single-

site Gibbs sampler; C) additional two-dimensional simulations in which the coefficient image contains

a single large, homogenous predictive region, and in which the predictors are subject to registration er-

rors; D) a three-dimensional visualization of the simulations results in Section 3; E) a three-dimensional

visualization of the simulations results in Supplement B; and F) an additional three-dimensional visual-

ization of the simulations results in Supplement B. Also included are code and generating PC data for the

two-dimensional simulations in Section 3.
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Smooth Scalar-on-Image Regression via
Spatial Bayesian Variable Selection: Supplement A

By: Jeff Goldsmith, Lei Huang, Ciprian Crainiceanu

A Theoretical Results

Recall our previous notation that δl is the neighborhood consisting of all image locations sharing a face

(but not a corner) with location l, and that dl = |δl|where |·| denotes the cardinality of a set.

Theorem 1. If there exists at least one location l for which γl = 0, then p(β | γ) is proper.

Proof. Define sets L = {l : γl = 1} and LC = {l : γl = 0} that partition image locations in predictive

and non-predictive locations, and assume that LC is non-empty. Let βL and βLC be the coefficient image

at the predictive and non-predictive locations, respectively; also let β˜L be the regression coefficients of

predictive locations expressed as a vector.

For l ∈ LC , [βl|γl = 0] ∼ δ(0) where δ(0) is the Dirac delta function. For l ∈ L, [βl|β−l,γ−l] ∼

N
[∑

l′∈δl
βl′γl′

dl
, σ2β/dl

]
. Note that

∑
l′∈δl

βl′γl′

dl
=

∑
l′∈(δl∩L) βl′

dl
so that the distribution depends only on ele-

ments of βL. Defining bll′ = 1
dl

, we have
∑
l′∈(δl∩L) βl′

dl
=
∑

l′∈(δl∩L) bll′βl′ . Following Brook’s lemma (Brook,

1964), this prior specification for [βl|β−l,γ−l] results in the joint density f(β˜L) ∝ exp
[
−1
2 β˜TLD−1(I −B)β˜L

]
where D and B are square matrices of size |L| × |L| whose rows and columns correspond to the location

ordering of β˜L. D is a diagonal matrix with entries Dll = σ2β/dl and B has elements Bll′ = bll′ defined

above and is zero elsewhere.

Notice bll′dl = bl′ldl′ , so D−1(I − B) is a symmetric matrix. Next, we show this matrix is positive

definite. In the following, the notation l < l′ will indicate that the location l precedes location l′ in the
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ordering of the vector β˜L. For an arbitrary nonzero vector x of length |L|

xTD−1(I −B)x =
∑
l∈L

dl
σ2β
x2l − 2

∑
l<l′

dl
σ2β
bll′xlxl′

=
∑
l∈L

dl
σ2β
x2l +

∑
l<l′

dl
σ2β
bll′(x

2
l − 2xlxl′ + x2l )−

∑
l<l′

dl
σ2β
bll′(x

2
l + x2l′)

=
∑
l∈L

dl
σ2β
x2l +

∑
l<l′

dl
σ2β
bll′(xl − xl′)2 −

∑
l 6=l′

dl
σ2β
bll′x

2
l

=
∑
l∈L

 dl
σ2β

1−
∑
{l′:l′ 6=l}

bll′

x2l

+
∑
l<l′

dl
σ2β
bll′(xl − x′l)2. (10)

Because bll′ is non-negative, we have
∑

l<l′
dl
σ2
β
bll′(xl−x′l)2 ≥ 0. Moreover, for every l the term

∑
{l′:l′ 6=l} bll′ =

1
dl
· |{l′ : l′ ∈ δl ∩ L}| ≤ 1. Because we assume LC is non-empty, there exists at least one location l such

that the preceding inequality is strict. Therefore there is at least one location l for which

∑
l∈L

 dl
σ2β

1−
∑
{l′:l′ 6=l}

bll′

x2l

 > 0

and thus xTD−1(I −B)x > 0. So, the matrix D−1(I −B) is symmetric and positive definite, and [β˜L] has

a proper joint distribution. Finally, we note f(β|γ) = f(β˜L)∏l∈LC δ(0), which is the product of proper

densities.
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Smooth Scalar-on-Image Regression via
Spatial Bayesian Variable Selection: Supplement B

By: Jeff Goldsmith, Lei Huang, Ciprian Crainiceanu

B R Code for Single-site Sampler

The following code implements the Gibbs sampler used for two-dimensional scalar-on-image regression;
straightforward extensions allow for higher dimensions. In this code, the quantities N1 and N2 are the
dimensions of the image predictors; xbeta is the vector of dot products X · β and is initialized to 0, as
is β; and sigeps.inv and sigbeta.inv are 1

σ2
ε

and 1
σ2
β

, respectively. This code sweeps over all image

locations, at each point making a Bernoulli choice between a zero and nonzero coefficient based on the
prior information and the relative impact on the likelihood comparing a zero to a nonzero coefficient.
Coefficients alpha for fixed effects FixEf are updated after the sweep over image locations.

for(i in N1:1){

for(j in 1:N2){

# define delta neighborhood

delta = cbind(c(i-1, i+1, i,i), c(j,j, j-1, j+1))

delta = replace(delta, which(delta<=0), NA)

delta[,1] = replace(delta[,1], which(delta[,1]>N1), NA)

delta[,2] = replace(delta[,2], which(delta[,2]>N2), NA)

dl = sum(complete.cases(delta))

Xl=X[i,j,]

xbeta0 = xbeta - betaHat[i,j]*Xl; txbeta0 = t(xbeta0)

# generate nonzero coefficient

betabar = mean(betaHat[delta], na.rm=TRUE)

Sigl = 1/(sigeps.inv * InProd[i,j] + dl * sigbeta.inv)

Mul = Sigl * ( sigeps.inv * (tY - t(FixEf%*%alpha) - txbeta0)%*%Xl

+ dl * sigbeta.inv * betabar )

betaStar = rnorm(1, Mul, sqrt(Sigl))

xbeta1 = xbeta0+Xl*betaStar; txbeta1=t(xbeta1)

# compute posterior probability g_l

IND = sum(1-2*z[delta], na.rm=TRUE)

g = sqrt(2*pi*SigB/dl)*exp((-.5*sigeps.inv)*(txbeta0%*%xbeta0

+ 2*(txbeta1-txbeta0)%*%(Y+FixEf%*%alpha)

- txbeta1%*%xbeta1) + .5*sigbeta.inv*dl*(betaStar-betabar)ˆ2

- A[i,j] + b*IND )

ppos = 1/(1+g)

# Bernoulli choice based on posterior probability

if(rbinom(1, 1, ppos)==1) {z[i,j] = 1; betaHat[i,j] = betaStar}

else {z[i,j] = betaHat[i,j] = 0}
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# update X * Beta based on current iteration

xbeta = xbeta0 + betaHat[i,j]*Xl

}

}
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C Additional Simulation Results

Here we consider additional scenarios for the two-dimensional simulations described in Section 3 in the

main manuscript. We examine two additional cases: first, the coefficient function contains a large, rect-

angular predictive region on the boundary of the image in which all regression coefficients are equal;

second, we examine the impact of registration error on the estimated coefficient image.

C.1 Large, Homogeneous Predictive Region

We construct predictors as in Section 3, using a principal components decomposition of observed 50× 50

axial slices to generate simulated images XS
i =

∑50
k=1 cikφk. Here φ = {φ1, . . . , φ50} are eigen-images

with accompanying eigenvalues λ = {λ1, ..., λ50}, and PC loadings ci are generated ci ∼ N [0,diag(λ)].

The coefficient function β contains a single rectangular (30×15) predictive region in which the regression

coefficients βl are uniformly equal to 1. As in Section 3, we choose three signal-to-noise ratios σ2
y

σ2
ε

=

3, 1, 1/3.

I = 100 I = 500
σ2y/σ

2
ε = 3 1 1/3 3 1 1/3

GMRF - 2D
MSE1 0.172 0.273 0.472 0.079 0.117 0.185
MSE0 0.006 0.019 0.044 0.005 0.007 0.012
Computation 104.4 101.7 104.8 169.5 167.8 165.6

EX. - 2D
MSE1 0.462 0.651 0.778 0.370 0.455 0.550
MSE0 0.026 0.026 0.030 0.003 0.007 0.020
Computation 86.2 92.8 88.9 141.9 143.9 141.5

FPCR - 2D
MSE1 0.175 0.256 0.363 0.103 0.133 0.192
MSE0 0.034 0.040 0.046 0.026 0.029 0.034
Computation 0.4 0.4 0.4 1.8 1.8 1.8

Table C.1: Average mean squared error separated by true predictive and non-predictive location, signal-
to-noise ratio, sample size, predictor dimension, and estimation technique (“GMRF” labels the Gaussian
MRF prior, “EX” labels the exchangeable prior, and “FPCR” the functional approach). Average computa-
tion time (in seconds) to fit the model is also shown.
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For each signal-to-noise ratio we generate 500 datasets for both I = 100 and I = 500 and apply

the proposed method, the related scalar-on-image model with an exchangeable prior on the regression

coefficients, and the FPCR approach. Tuning parameters are chosen using the first simulated dataset, and

the results below may not be fully representative of the performance of the three methods.

Table C.1 shows the MSE taken over all simulated datasets for each combination of sample size and

signal-to-noise ratio. The proposed method provides good estimates of the coefficient image in both

predictive and non-predictive regions, and performance improves as sample size increases and as signal-

to-noise ratio increases. The proposed method substantially outperforms the related approach that uses

an exchangeable prior distribution: given the homogeneity of the predictive region, encouraging spatial

smoothness improves estimation. The proposed method often outperforms the FPCR approach as well,

with the exception of I = 100 and σ2
y

σ2
ε

= 1/3. While these approaches are much more comparable in

terms of MSE here than in the bump-and-slab setting considered in Section 3, there remain significant

qualitative differences in estimated coefficient images. As Figure C.1 shows, estimated coefficient images

for the proposed method contain many locations that are shrunk entirely to zero due to the sparsity

constraint. On the other hand, the FPCR method does not impose sparsity, but induces sparsity both

through penalization and a basis representation that avoids voxel-by-voxel estimation.

Figure C.1: Plot of typical estimated coefficient images from the simulation with a large, homogeneous
predictive region. Estimates from the proposed method (labelled “BVS”) and the FPCR method are
shown, along with the corresponding MSE1 and MSE0. The true coefficient is shown in black.
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C.2 Impact of Registration Errors

In this simulation we construct simulated predictors to illustrate the effect of registration error on the

proposed procedure. To do so, we modify the previous method for constructing predictors in the fol-

lowing way. From the observed data we extract 56 × 56 axial slices and perform a principal compo-

nents decomposition of these images. Simulated images are constructed using XS
i =

∑50
k=1 cikφk, where

φ = {φ1, . . . , φ50} are eigen-images with accompanying eigenvalues λ = {λ1, ..., λ50}, and PC loadings ci

are generated ci ∼ N [0,diag(λ)]. The coefficient function β is defined as in Section 3 using bivariate nor-

mal density functions and is applied to the middle 50×50 component of each 56×56 simulated predictor

to generate outcomes. As in Section 3, we choose three signal-to-noise ratios σ2
y

σ2
ε
= 3, 1, 1/3.

I = 100 I = 500
σ2y/σ

2
ε = 3 1 1/3 3 1 1/3

GMRF - 2D
MSE1 2.511 3.053 3.781 1.576 1.712 2.214
MSE0 0.065 0.082 0.218 0.136 0.110 0.143
Computation 112.8 111.7 111.9 163.5 164.9 164.4

EX. - 2D
MSE1 2.731 3.126 3.744 1.977 2.182 2.584
MSE0 0.233 0.194 0.385 0.110 0.120 0.227
Computation 96.8 95.0 95.3 148.9 147.8 147.2

FPCR - 2D
MSE1 2.928 3.753 4.635 1.902 2.151 2.784
MSE0 0.091 0.058 0.027 0.133 0.123 0.099
Computation 0.4 0.4 0.4 2.1 2.1 2.1

Table C.2: Average mean squared error separated by true predictive and non-predictive location, signal-
to-noise ratio, sample size, predictor dimension, and estimation technique (“GMRF” labels the Gaussian
MRF prior, “EX” labels the exchangeable prior, and “FPCR” the functional approach). Average computa-
tion time (in seconds) to fit the model is also shown.

To simulate registration errors, the “observed” predictors in each simulation are 50 × 50 images that

are off-center components of the complete 56× 56 generated images; the predictors are randomly shifted

horizontally and vertically by {−3,−2,−1, 0, 1, 2, 3} voxels with probability {.1, .1, .2, .2, .2, .1, .1}. Thus,

each observed predictor is shifted from the true generating image by a random amount. We also note that

due to the size of predictive regions in the coefficient image, these registration errors are substantial.

Table C.2 shows the MSE taken over all simulated datasets for each combination of sample size and

signal-to-noise ratio. A comparison with Table 1 comparison, which provides results for the same simula-
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tion design without registration error, unsurprisingly indicates that all methods have higher MSEs in the

presence of registration error. Moreover, the results indicate that the proposed method outperforms the

competing approaches in terms of MSE for predictive regions. The FPCR has comparable and sometimes

lower MSE on non-predictive regions; as Figure C.2 shows, this is due to additional regions declared pre-

dictive by the proposed method as well as general oversmoothing by the FPCR method. As expected,

performance improves for all methods as signal strength rises and as sample size increases.

Figure C.2: Plot of typical estimated coefficient images from the simulation with registration errors. Es-
timates from the proposed method (labelled “BVS”) and the FPCR method are shown, along with the
corresponding MSE1 and MSE0. The true coefficient is shown in black.
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