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Abstract

One useful approach for fitting linear models with scalar outcomes and functional pre-
dictors involves transforming the functional data to wavelet domain and converting the data
fitting problem to a variable selection problem. Applying the LASSO procedure in this sit-
uation has been shown to be efficient and powerful. In this paper we explore two potential
directions for improvements to this method: techniques for pre-screening and methods for
weighting the LASSO-type penalty. We consider several strategies for each of these directions
which have never been investigated, either numerically or theoretically, in a functional linear
regression context. The finite-sample performance of the proposed methods are compared
through both simulations and real-data applications with both 1D signals and 2D image
predictors. We also discuss asymptotic aspects. We show that applying these procedures can
lead to improved estimation and prediction as well as better stability.

Keywords: functional data analysis, penalized linear regression, wavelet regression, adaptive
LASSO, screening strategies

1 Introduction

Substantial attention has been paid to problems involving functional linear regression model

yi = α +

∫ 1

0

Xi(t)η(t)dt+ εi, i = 1, . . . , n, (1)

where the response yi and the intercept α are scalar, the predictor Xi and the slope η are square-

integrable functions in L2 ([0, 1]), and the errors εi are independent and identical normally dis-

tributed with mean 0 and finite variance σ2. The literature on functional linear regression is grow-

ing. A sampling of papers examining this situation and various asymptotic properties includes

Cardot et al. (2003), Cardot and Sarda (2005), Cai and Hall (2006), Antoniadis and Sapatinas

(2007), Hall and Horowitz (2007), Li and Hsing (2007), Reiss and Ogden (2007), Müller and Yao

(2008), Crainiceanu, Staicu, and Di (2009), Delaigle, Hall, and Apanasovich (2009), James et al.

(2009), Crambes, Kneip, and Sarda (2009), Goldsmith et al. (2012), and Lee and Park (2012). A

potentially very useful idea in fitting models involving functional data is to transform functional

data via wavelets. Recent literature on functional data analysis in the wavelet domain includes

Amato, Antoniadis, and De Feis (2006), Wang, Ray, and Mallick (2007), Malloy et al. (2010), Zhu,

Brown, and Morris (2012), and Zhao et al. (2012).

Wavelet-based LASSO (Zhao et al., 2012) has been proposed as a powerful estimation ap-

proach for fitting the model (1). It works by transforming the functional regression problem to a

variable selection problem. Functional predictors can be efficiently represented by a few wavelet

coefficients. After applying discrete wavelet transform (DWT), techniques such as LASSO (Tib-

shirani, 1996) can then be applied to select and estimate those few important wavelet coefficients.
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Wavelet-based LASSO method is well suited for the situation in which the η function has spatial

heterogeneity and/or spiky local features. Although wavelet-based LASSO method has good pre-

diction ability, we observed from simulation studies that the functional coefficient estimates often

show anomalously large point-wise variability.

The purpose of this article is to explore two potential directions for improvements to the

wavelet-based LASSO: methods for weighting the LASSO-type penalty and techniques for pre-

screening. Although weighting the L1 penalty terms and adding a pre-screening step have been

widely studied in linear regression model setting, these strategies have never been investigated,

either numerically or theoretically, in a functional linear regression model context. In this study,

we first demonstrate weighted version LASSO can improve both prediction ability and estimation

accuracy. In linear regression, although LASSO shows good prediction accuracy, it is known to

be variable selection inconsistent when the underlying model violates certain regularity conditions

(Zou, 2006; Zhao and Yu, 2006). Meinshausen and Bühlmann (2006) prove that the prediction

based tuning parameter selection method in LASSO often results in inconsistent variable selection,

and consequently the final predictive model tend to include many noise features. To improve

LASSO’s performance, Zou (2006) proposed to add weights to the L1 penalty terms where weights

were defined as ordinary least square (OLS) estimates. Later, (Huang et al., 2008) considered the

magnitudes of correlation coefficient between the predictor and the response as the weights. Both

approaches were shown to have better variable selection consistency. In functional linear model

setting, wavelet-based LASSO suffers from the same difficulty resulting from inconsistent selection

of wavelet coefficients. We extend weighted LASSO methods to functional linear regression in

the wavelet domain, with the hope that this can improve estimation accuracy by penalizing less

important variables more than more important ones. In functional linear regression, the predictors

are often curves densely sampled at equally spaced points. That is the number of data points

can be much larger than the sample size resulting in a “large p small n” problem. Therefore,

using OLS estimates as weights is not feasible in general. We propose two new weights. The

first weighting scheme uses information from the magnitudes of wavelet coefficients, whereas the

second one is based on sample variances of wavelet coefficients. Those two weight schemes are

fundamentally different from other weighting schemes in that the importance of each predictor is

ranked without consideration of its relationship with response variable. Our results show that the

wavelet-based weighted LASSO not only provide great prediction accuracy, but also significantly

improve estimation consistency.

Second, we show that incorporating a screening step before applying a LASSO-type penalty
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in the wavelet domain can improve both prediction ability and estimation accuracy. Adding a

screening step to wavelet-based LASSO can be important. For example, it is increasingly common

in practice to have functional predictors with ultra-high dimensionality. The challenge of sta-

tistical modelling using ultra-high dimensional data involves balancing three criteria: statistical

accuracy, model interpretation, and computational complexity (Fan and Lv, 2010). For example,

Shaw et al. (2006) used serial image data to study how longitudinal changes in brain develop-

ment in young children with attention deficit hyperactivity disorder (ADHD) can predict relevant

clinical outcomes. In such a case, it is desirable to apply a screening step before model fitting.

With 2D images of size 128 × 128 as predictors, it is necessary to deal with more than 16, 000

predictors in the wavelet domain. Therefore it is of critical importance to reduce dimensionality

to a workable size. In this paper, we investigate some screening approaches that would effectively

reduce computational burden while the reduced model still contains all important information

with high probability.

The rest of this article is organized as follows. In Section 2, we propose two versions of weighted

LASSO in wavelet domain analysis. We then introduce some screening approaches to functional

linear models. We show their statistical properties in Section 3 and use simulation studies and

real data examples to demonstrate finite sample performance of the proposed methods in Section

4. Section 5 concludes this paper with some discussions.

2 Methods

In this section, we introduce wavelet-based weighted LASSO with different weighting schemes

in the penalty term and discuss some screening strategies that can be applied to wavelet-based

functional linear model. We assume readers have certain familiarity with wavelet transform.

Readers without this background can refer to Ogden (1997), Vidakovic (1999), and Abramovich,

Bailey, and Sapatinas (2000) for a comprehensive overview of wavelet applications in statistics.

2.1 Wavelets

Let φ and ψ be a compactly supported scaling function and detail wavelet, respectively with∫
φ(t)dt = 1. Define φjk = 2j/2φ(2j − k) and ψjk = 2j/2ψ(2j − k). For a given decomposition level

j0, {φj0k : k = 0, . . . , 2j0 − 1} ∪ {ψjk : j ≥ j0, k = 0, . . . , 2j − 1} forms a basis set of orthonormal

wavelets for L2 ([0, 1]). Let {z′ij0k = 〈Xi, φj0k〉 , k = 0, . . . , 2j0 − 1} and {zijk = 〈Xi, ψjk〉 , j =

j0, . . . , log2(N)− 1, k = 0, . . . , 2j − 1}. By discrete wavelet transform (DWT), the functional pre-
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dictor Xi sampled at N equally spaced points can be represented by a set of N wavelet coefficients:

Xi =
2j0−1∑
k=0

z′ij0kφj0k +

log2(N)−1∑
j=j0

2j−1∑
k=0

zijkψjk = W TZi,

where N is a power of two, W is an orthogonal N × N matrix associated with the orthonormal

wavelet bases, and Zi is an N × 1 vector of wavelet coefficients from DWT of Xi. Similarly, the

wavelet series of the coefficient function η can be written as

η =
2j0−1∑
k=0

β′j0kφj0k +

log2(N)−1∑
j=j0

2j−1∑
k=0

βjkψjk = W Tβ,

where β′j0k = 〈η, φj0k〉, βjk = 〈η, ψjk〉, and β is an N × 1 vector of wavelet coefficients from DWT

of η.

In this paper, we require an orthonormal wavelet basis on [0, 1] such as those in Daubechies’

family. Wavelet transform is a compelling choice of such transform mainly due to its great com-

pression ability, i.e, functions can be represented by relatively few non-zero wavelet coefficients.

Penalized regression methods can be readily extended to functional linear model once functional

predictors are transformed into wavelet domain.

2.2 Wavelet-based Weighted LASSO

The general form of a linear scalar-on-function model is given in (1). For simplicity, we will drop

the term α from equation (1). The intercept α can be estimated by α̂ = Ȳ −
∫ 1

0
X̄(t)η(t)dt, where

Ȳ and X̄ are sample means of response and functional predictor, respectively. We assume each

functional predictor Xi and the coefficient function η have a sparse representation in the wavelet

domain. By applying the DWT to functional data at a primary decomposition level j0, we can

obtain a discrete version of model (1) expressed as

yi = XT
i β + εi =

N∑
h=1

zihβh + εi, i = 1, . . . , n. (2)

A natural estimation of β in equation (2) can be obtained via penalized regression:

β̂ = arg min
β

1

n

n∑
i=1

(
yi −

N∑
h=1

zihβh

)2

+
N∑

h=1

λ

wh

|βh|, (3)

where wh are some user-defined positive weights. Various choices of weights have been proposed in

linear regression model setting. For example, the LASSO (Tibshirani, 1996) used constant weights

wh = 1. Weights wh = |β̂0
h| are considered by Zou (2006) where each β̂0

h is an OLS estimate of the
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corresponding term in the model, while Huang et al. (2008) considered correlation based weights

with wh =

∣∣∣∣( n∑
i=1

zihyi

)
/

(
n∑

i=1

z2ih

)∣∣∣∣.
In this paper, we propose two new weighting schemes specific to wavelet-based penalized re-

gression method. The weights in (3) can be defined as:

1. wh = θ̂h, where θ̂h = 1
n
|

n∑
i=1

zih|; or

2. wh = σ̂2
h, where σ̂2

h = 1
n−1

n∑
i=1

(zih − z̄h)2 and z̄h is the sample mean of the hth wavelet

coefficients.

The proposed methods are mainly motivated by shrinkage-based estimators in nonparmetric re-

gression with wavelets (Donoho and Johnstone, 1994; Donoho at al., 1996). That is, the empirical

wavelet coefficients with magnitudes less than a threshold value C contain mostly the noise and

thus ignorable in estimating η. When applied to L1-type penalty in wavelet-based approaches,

weighting each wavelet coefficient by its magnitude induces threshold-like effect which eventually

leads to adaptive regularization.

The rationale for using sample variance of wavelet coefficients as weights comes from Johnstone

and Lu (2009). They pointed out that wavelet coefficients with large magnitudes typically have

large sample variances, which also agrees with what we have observed in real data examples.

In addition, variables with low variability would provide limited predictive power to the outcome

variable in regression analysis. Therefore, weighting by the sample variances of wavelet coefficients

could effectively separate important variables from unimportant ones. We expect that weighting

by sample variance would similarly introduce adaptive regularization to L1-type penalty.

The data-dependent weight wh is critical in terms of consistency of variable selection and model

estimation for the LASSO-type estimator. The weight function should be chosen adaptively to

reduce biases due to penalizations. Ideally, as the sample size increases, we would want the weights

for less important, noisy predictors to go to infinity and the weights for important, nonzero ones

to converge to a small constant (Zou, 2006). That is, adaptive regularization should effectively

separate important nonzero wavelet coefficients from the unimportant ones.

2.3 Screening strategies

When the data dimensionality is very high, it is natural to perform screening before model fit-

ting. We consider four approaches for the wavelet-based methods: 1) Screening by correlation,
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2) Screening by stability selection, 3) Screening by variance, and 4) Screening by magnitude of

wavelet coefficient.

Screening by Correlation: Fan and Lv (2008) propose to select a set of important variables

through a Sure Independence Screening (SIS) procedure. Specifically, the SIS procedure involves

selecting covariates based on the magnitudes of their sample correlations with the response vari-

able. Only the selected covariates will be used for further analysis. The SIS step significantly

reduces computational complexity. They showed that the SIS procedure can reduce the dimen-

sionality from an exponentially growing number down to a smaller scale, while the reduced model

still contains all the variables in the true model with probability tending to 1.

Screening by Stability Selection: Meinshausen and Bühlmann (2010) demonstrate that variable

selection and model estimation improve markedly if covariates are first screened by the stability

selection procedure. The stability selection procedure involves selecting variables based on their

maximum frequencies of being included in models built on perturbed data over a range of regular-

izations. They claimed that, with stability selection, the randomized LASSO can achieve model

selection consistency even if the irrepresentability condition is not satisfied. In this paper, we will

use a similar approach to screen out less important wavelet coefficients before model fitting. Using

wavelet-based LASSO as an example, we resample dn/2e individuals from the data, fit the wavelet-

based LASSO, and the variables remaining in the model are selected by 5-fold cross-validation.

We repeat this process B times and the variables with their proportions of inclusion less than a

threshold value (π) will be excluded from further analysis.

Screening by Variance: For principal component analysis (PCA) of signals with ultrahigh

dimension, Johnstone and Lu (2009) assert that some initial reduction in dimensionality is desirable

and this can be best achieved by working in wavelet domain in which the signals have sparse

representations. Screening by variance before applying PCA algorithm can improve estimation.

We will extend this to the linear scalar-on-function regression model. The wavelet coefficients with

small sample variances will be excluded from the model.

Screening by Magnitudes of Wavelet Coefficients: Wavelet coefficients with large magnitude

tend to have a large presence in the predictor functions and thus may play a role in predicting the

outcome. Let M = {1 ≤ l ≤ N : θl 6= 0} and θ̂(1) ≥ θ̂(2) ≥ · · · ≥ θ̂(N) be the sample magnitudes of

wavelet coefficients. For a given k, the selected subset M̂ = {l : θ̂l ≥ θ̂(k)}.
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2.4 Algorithm

In the previous two sections, we proposed two schemes for weighted LASSO which are specific

to wavelet domain analysis and extended some screening strategies to wavelet-based methods for

functional linear model. In general, the wavelet-based penalized regression can be implemented

as following:

1. Transform functional predictors into wavelet domain.

2. Select a subset of important wavelet coefficients by one of the following criteria: a) selecting

all coefficients; b) selecting k coefficients with the largest sample variances; c) selecting k

coefficients with the largest sample magnitudes; d) selecting k coefficients with the largest

sample correlations in magnitude; or e) selecting k coefficients by stability selection.

3. Variable selection and model estimation by LASSO-type algorithm where the weight wh, h =

1, . . . , N in (3) is defined by one of the following: a)wh = 1; b)wh = θ̂h; c) wh = σ̂h; or d)

wh =

(
n∑

i=1

zihYi

)
/

(
n∑

i=1

z2ih

)
4. Transform coefficient estimations back to the original domain by inverse wavelet transform.

Extension of the above methods to functional linear model with 2D or 3D image predictor is

straightforward by performing 2D or 3D wavelet decomposition to image predictors.

2.5 Tuning parameter selection

Two tuning parameters λ and j0 involved in the wavelet-based weighted LASSO methods. The

tuning parameter λ controls the model sparsity. It must be positive. All variables are retained in

the model for λ → 0, and the model becomes empty as λ → ∞. The other tuning parameter j0

ranges from 1 to log2(N)− 1. The choice of j0 controls the optimal level of wavelet decomposition

for the functional data. In this study, we choose the values of λ and j0 by 5-fold cross-validation

such that the optimal combination of λ and j0 would produce the lowest cross-validated residual

sum of squares over a grid values of λ and j0.

If a screening step is applied before running the desired method, the number of features selected

for further analysis (i.e., k) needs to be chosen as well. This value can be chosen by cross-validation,

but we do not recommend it. In practice, the results are relatively insensitive to the exact value

of k, and we don’t want to exclude too many variables in the screening step. Typically, we would

select k such that the first k wavelet coefficients would explain 99.5% of total variability in the
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data. Due to great compression ability of wavelets, we notice this number is often smaller than

n− 1 in our simulation studies.

3 Asymptotic properties

In this section, we will provide some theoretical support of the wavelet-based adaptive LASSO

method with magnitudes of wavelet coefficients as weights (i.e, wh = θ̂h in equation (3)). In

addition, we will study the correct selection property of one screening approach: selection by

magnitudes of wavelet coefficients.

3.1 Consistent Estimation

We investigate asymptotic properties of wavelet-based adaptive LASSO estimator when the curves

are increasingly densely observed (N →∞) as the sample size increases (n→∞). After applying

a screening step (i.e., selection by magnitudes of wavelet coefficients), the dimensionality of the

functional predictor in wavelet domain reduced from Nn to kn. Here we subscript quantities that

vary with the sample size n. Consequently, equation (2) becomes

yi =
kn∑
h=1

zihβh + ε∗i , i = 1, . . . , n, (4)

where ε∗i = εi + ξi, and ξi =
∑Nn

h=kn
zihβh is the screening error.

Let Zkn be a n × kn matrix, where the columns of Zkn are the kn wavelet coefficients that

remain after screening. Let Hn = {h : |βh| ≥ Cn} with Cn > 0, and the cardinality is Sn = |Hn|.

Let ρkn be the smallest eigenvalue of Σkn = 1
n
ZT

kn
Zkn . In addition, let ζHn = min

h∈Hn

|βh| be the

smallest magnitude of the coefficients. Following Lee and Park (2012), who proposed a general

framework for penalized least squared estimation of η in equation (1), we make the following

assumptions:

(a1) After the screening step, kn is larger than the greatest index in the set Hn.

(a2)
∑

h∈Hn
n1/2λn/θh = op(1).

(a3) η is a q times differentiable function in the Sobolev sense (i.e. η ∈ W q[0, 1]), and the wavelet

basis has p vanishing moments, where p > q.

(a4) (
∑∞

h=0 |〈η, ψh〉|r)1/r <∞ for some r < 2.
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Assumption (a1) is satisfied if kn → ∞ as n → ∞. Also, due to correct selection property of

the screening method (see section 3.2), for sufficiently large n, the selected subset of kn wavelet

coefficients includes nonzero ones with probability tending to one. Assumption (a2) is satisfied if

n1/2λnSnζ
−1
Hn
→ 0.

Theorem 1. Let η̂ be the estimated coefficient function for model (2). Let kn be the number of

predictors remaining in the model after screening step, and ρkn be the smallest eigenvalue of Σkn.

If assumptions (a1)-(a4) hold, then

‖ η̂n − η‖ 2
L2 = Op

(
kn
nρ2kn

)
+ o(k1−2/rn ) + o(N−2qn ).

The proof is provided in the appendix. Note Theorem 1 relies on correct selection of nonzero

wavelet coefficients in the screening step. If no screening is applied prior to model fitting, then

‖ η̂n − η‖ 2
L2 = Op

(
Nn

nρ2Nn

)
+ o(k1−2/rn ) + o(N−2qn ),

where ρNn is the smallest eigenvalue of ΣNn = 1
n
ZT

Nn
ZNn and ZNn is an n×Nn matrix of all wavelet

coefficients. Clearly, if the screening strategy selects all nonzero wavelet coefficients with probably

tending to 1, the proposed method with screening step improves the estimation compared to the

one without screening step.

3.2 Probability of false exclusion

Johnstone and Lu (2009) showed that the probability that the selected subset does not contain

wavelet coefficients with the largest sample variances is polynomially small. In this section, we

will show that the selected subset M̂ contains the largest population magnitudes with probability

tending to 1. We assume each wavelet coefficient Zh follows a normal distribution, i.e.

Zh ∼ N(µh, σ
2
h), h = 1, . . . , N. (5)

Let θh = |µh| and θ̂h = 1
n
|
∑n

i=1 zih|. Without loss of generality, let the population magnitude be

θ1 ≥ θ2 ≥ · · · ≥ θN , and the ordered sample magnitude be θ̂(1) ≥ θ̂(2) ≥ · · · ≥ θ̂(N). We include all

indices l in M = {1 ≤ l ≤ N : θl 6= 0}. Following Johnstone and Lu (2009), a false exclusion (FE)

occurs if any variable in M is missed:

FE =
⋃
l∈M

{
l /∈ M̂

}
=
⋃
l∈M

{θ̂l < θ̂(k)}
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Theorem 2. Assume (5), let Ch = σh/θh, h = 1, 2, . . . , N, where 0 < Ch < C0. Let Φ(.) be the

cumulative distribution function of a standard normal variable. With γn =
√
log(n)/n, θk = bγn

where b > 0, a suitably chosen constant d > 1, and a subset of k variables are selected, an upper

bound of the probability of a false exclusion is given by

P (FE) ≤ (N − k + 1) Φ

(
−
√
nγn/θk
C0

)
+ (N − k + 1) Φ

(
−
√
n(2 + γn/θk)

C0

)
+ Φ

(√
n(1/d− 1)

C0

)
The proof of this theorem, following the steps in proof of Theorem 3 by Johnstone and Lu

(2009), is provided in the appendix. The probability of false exclusion is a function of the number

of observation points N , the sample size n, the size of the selected variable set k, the smallest

wavelet coefficient magnitude in the selected model θk, and the signal to noise ratio as estimated by

coefficient of variation C0. As an example, if the size of the selected set k = 50, while N = 1000,

d = 2, and b = 0.75, then P (FE) ≤ 0.05 for C0 = 3 with n = 100. The probability of false

exclusion reduces to 0.009 if the sample size n increases to 200.

4 Numerical studies

In this section, we perform simulations to study finite sample performance of wavelet-based

weighted LASSO as well as different screening approaches in functional linear regression. To

simplify notations in figure legends and labels, as well as in Tables, we use “LASSO” to repre-

sent wavelet-based LASSO approach, and “Wv”, “Wm”, and “Wc” for wavelet-based weighted

LASSO method with variance, magnitudes of wavelet coefficients, and magnitudes of correlation

coefficients as penalty weights, respectively.

4.1 Simulation study - 1D functional predictor

We employ similar settings as those in Zhao et al. (2012). Specifically, functional predictors, xi(t),

t ∈ (0, 1), are generated from a Brownian bridge stochastic process. That is, X(t) is a continuous

zero-mean Gaussian process both starting and ending at 0 and with Cov(X(t), X(s)) = s(1 − t)

for s < t. The true coefficient function is “heavisine” (see Figure S1 in supplementary materials).

Performance of the proposed methods is compared under different noise levels, where signal to

noise ratio (SNR), measured by the squared multiple correlation coefficient of the true model, is

set to 0.2, 0.5, and 0.9 respectively. The curve is sampled at N = 1024 equally spaced time points.

We carry out 200 simulations for each setting of the parameters with the sample size (n) fixed

at 100 for each run. The discrete wavelet transform is performed using “wavethresh” package
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(Nason, 2010) in R 2.15.1. In this study, we use “Daubechies Least Asymmetric family” with

periodic boundary handling and the filter number is set to 4.

The L1 penalty parameter λ and the wavelet decomposition level j0 are selected by 5-fold cross

validation. The size k of the set of selected variables in the screening step should be determined

from the data. In this study, we restrict the maximum number of selected wavelet coefficients at

the screening step to be n−1 for all screening approaches except for screening by stability selection.

When screening by stability selection, for each dataset, we run proposed methods 400 times in

random subsamples of size dn/2e, where the random subsamples are drawn without replacement.

Variables shown in the final models at least 80% of the time are included for further analysis after

screening step.

Prediction and Estimation: Weighted versus Unweighted LASSO

Performance of various methods is compared according to their prediction ability and estimation

accuracy. The prediction ability is measured by the mean absolute error of prediction (MAE)

1
n

∑n
i=1 |Z

T
i β̂ − ZT

i β|, while the estimation accuracy is measured by mean integrated squared

error (MISE) = 1
N

∑N
h=1(β̂h − βh)2.

Figures 1 and 2 along with Table 1 show MAEs and MISEs for the proposed methods in

combination with different screening approaches. Weighted LASSO methods clearly give smaller

prediction errors and better estimation accuracy than unweighted LASSO does. When SNR is high

(i.e., R2 = 0.9), all three weighted LASSO approaches have similar prediction accuracy as that

of the unweighted LASSO. However, the weighted LASSO methods result in about 15% − 19%

reduction in prediction error for smaller SNR. The prediction errors from unweighted methods

when R2 = 0.2 are even smaller than those from unweighted LASSO when R2 = 0.5. Compared

to the unweighted LASSO, the weighted methods show around 65% − 84% reduction in MISEs,

depending on the weighting schemes and SNRs.

Mean and Standard deviation functions obtained from 200 simulated datasets are plotted in

Figure 3. Although unweighted LASSO shows great prediction accuracy, the mean estimated

coefficient function η̂ does not approximate the truth well and it has large variability. In contrast,

weighted methods clearly improve estimation accuracy and the resulting η̂ tends to be more

stable across different simulated datasets, as demonstrated by much lower point-wise variability

in functional coefficient estimations. The point-wise standard deviations from unweighted LASSO

range from 10 to 30 at most points, while those from weighted LASSO methods are generally in the

range of 1 to 4. It is not surprising to observe the conflict between good prediction and consistent
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Table 1: MAE and MISE based on 200 simulations when η is “heavisine”

MAE MISE

Method Screening R2 = 0.9 R2 = 0.5 R2 = 0.2 R2 = 0.9 R2 = 0.5 R2 = 0.2

LASSO None 1.25 1.87 2.22 1.89 3.91 4.63

LASSO Variance 1.16 1.58 1.82 0.25 0.76 1.42

LASSO Absolute mean 1.16 1.58 1.82 0.20 0.78 1.60

LASSO Correlation 1.23 1.91 2.29 1.74 3.78 4.57

LASSO Stability 1.17 1.65 1.93 0.13 0.86 1.50

Wv None 1.20 1.58 1.83 0.30 1.10 1.56

Wv Variance 1.12 1.57 1.84 0.12 0.65 1.88

Wv Absolute mean 1.12 1.57 1.84 0.12 0.64 1.51

Wv Correlation 1.15 1.64 1.93 0.28 1.27 2.09

Wv Stability 1.16 1.63 1.89 0.13 0.71 1.47

Wm None 1.17 1.58 1.82 0.39 0.99 1.37

Wm Variance 1.16 1.60 1.84 0.21 0.74 1.50

Wm Absolute mean 1.16 1.61 1.84 0.23 1.29 1.89

Wm Correlation 1.17 1.65 1.99 0.17 1.41 2.62

Wm Stability 1.18 1.65 1.89 0.18 0.90 1.52

Wc None 1.27 1.59 1.85 0.36 1.01 1.66

Wc Variance 1.15 1.64 1.93 0.28 1.27 2.09

Wc Absolute mean 1.16 1.64 1.92 0.28 1.40 2.13

Wc Correlation 1.19 1.88 2.28 1.03 3.58 4.53

Wc Stability 1.16 1.64 1.96 0.12 0.75 2.24
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estimation in the unweighted LASSO. Meinshausen and Bühlmann (2006) showed that, in linear

regression model, the optimal λ chosen by cross-validation criterion in LASSO often resulted in

inconsistent variable selection. This is also observed with unweighted LASSO.

Effects of screening on model estimation

From Table 1, screening by variance, wavelet coefficient magnitude, or stability selection results in

significant improvement of prediction and estimation accuracy for LASSO. The prediction errors

are reduced by up to 20% with the screening step, and most significantly, the estimation errors are

dropped by up to 93%. It should be noted that those three screening approaches show limited or

no improvement in terms of both prediction error and the estimation accuracy when the resulting

method is fit using weighted LASSO methods.

Irrespective of signal to noise ratio, the gain of adding a screening step is substantial in terms of

stability of coefficient function estimation in most settings. Figure 4 and Figures S2, S3, and S4 (in

supplementary materials) demonstrate that the screening step results in significant improvements

in reducing coefficient function estimation variability. This effect of screening on the stability

of coefficient function estimation is most impressive for LASSO method in which the point-wise

standard deviations were reduced from a wide range of values (e.g., 10− 50) to values less than 2.

In general, screening by magnitude and screening by variance of wavelet coefficient perform

similarly, and they tend to be better than the other screening methods in terms of both prediction

and estimation accuracy. Screening by stability selection generally gives desirable results but it is

computationally expensive. Compared to the other strategies, screening by correlation performs

worst in terms of both prediction error and estimation accuracy. It shows very limited improvement

over the underlying methods when signal to noise ratio (SNR) is high and it deteriorates prediction

when SNR is low. This is true regardless of the weighting scheme applied. It should be noted that

when the model-fitting method is unweighted LASSO or LASSO with magnitudes of correlation

coefficients as penalty weights, screening by correlation does not help improve estimation accuracy

and estimation stability. One possible reason for this is that there may be a group of highly

correlated wavelet coefficients after the pre-screening step, and LASSO tends to select only one

variable from the group, an observation made by Zou and Hastie (2005).
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4.2 Simulation study - 2D image predictor

Following Reiss et al. (2014) and Goldsmith et al. (2014), we simulate 500 images based on

the first 332 weighted principal components from a subsample of ADHD-200 data (ADHD-200

Consortium, 2012), where weights are randomly chosen from N(0, λ̃j) with λ̃j, j = 1, . . . , 332,

being the corresponding jth eigenvalue. The true coefficient image (η1) is generated based on the

first five principal components computed from the ADHD-200 data. Similar to settings for 1D

functional predictor, we generate 200 sets of continuous outcomes with n = 500 and the signal to

noise ratio is controlled at 0.2, 0.5, and 0.9, respectively.

Prediction ability and estimation accuracy are compared based on criteria defined in Section

4.1. The prediction errors from 200 simulated data can be found in Table S1 and the mean

estimated image coefficients in Figure S5 in the supplementary materials. LASSO weighted by

the magnitudes of wavelet coefficients shows slightly better performance in terms of estimation

accuracy, though it does not generally show better prediction.

4.3 Real data analysis

The wheat data: 1D functional predictor The wheat dataset consist of 100 samples of Near infrared

spectroscopy (NIR) spectrum measured from 1100 nm to 2500 nm in 2-nm intervals (Kalivas,

1997). The aim of this study is to establish whether NIR spectra of wheat samples can be used

to predict the wheat quality parameters (e.g., the moisture and the protein contents). In our

analysis, we use the once-differenced spectra to correct for a baseline shift. The spectra are then

linearly interpolated at 512 equally spaced points.

The ADHD-200 data: 2D image predictor This dataset comes from the recent ADHD-200

Global Competition (ADHD-200 Consortium, 2012). The image predictors are maps of fractional

amplitude of low-frequency fluctuations (fALFF) from resting-state functional magnetic resonant

images (rs-fMRI), where fALFF indicates the intensity of regional brain spontaneous activities and

is defined as the ratio of BOLD signal power spectrum within low frequency range (i.e., 0.01−0.08

Hz) over that of entire frequency range. The 2D image predictors are obtained from the slices for

which mean fALFF has the largest variability across voxels. We have 333 samples in this study.

In our study, we are trying to determine the relationship between brain measurements and IQ. In

this study, IQ was first regressed on age, gender, and handedness. The residuals were used as the

new responses.
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Prediction, estimation, and statistical inference

Prediction accuracy The data are randomly split into two halves with the first half used as training

data and the second half as testing data. We repeat this process 10 times. The mean absolute

prediction errors summed over testing datasets are reported in Table S2 for the wheat data and

Table S3 for the ADHD 200 data. In both datasets, MAEs from the wavelet-based weighted

methods are comparable to or smaller than that from the wavelet-based LASSO method, and the

screening step generally results in smaller MAEs compared to those from the underlying methods.

Coefficient function estimation and statistical inference

The wheat data: Figure 5 show the estimated functional coefficients and their corresponding

confidence intervals when the outcome measure is moisture content. Consistent with what we

find in simulation studies, the functional coefficient estimations from the wavelet-based weighted

LASSO methods are more stable/consistent. The estimated coefficient functions (Rows 1 and

2 in Figure 5) suggest a negative relationship between moisture contents and the intensity of

transmission of NIR radiation from the spectral range 1900- 2150 nm.

Confidence intervals on ω(t) can be generated using non-parametric bootstrapped based approach.

We used B = 1000 nonparametric bootstrap samples of matched pairs Yi, Xi(t) and reestimating

ω(t). The pointwise estimators for the mean coefficient function ω̄(t) and the standard deviation of

ω̄(t) are ω̄(t) =
∑B

i=1 ωb(t)/B and s̄(t) =
∑B

i=1 (ωb(t)− ω̄(t))2 /B respectively. The 95% pointwise

confidence intervals can be obtained by calculating ω̄(t) ± 1.96 ∗ s̄(t). The 95% joint confidence

intervals take the form ω̄(t) ± q0.95 ∗ s̄(t), where q0.95 is the 95% quantile of Mb, b = 1, 2, . . . B.

Here Mb is the maximum over the entire range of t values of the standardized mean realizations

for bth bootstrapped sample. Detailed algorithm for calculating Mb can be found in Crainiceanu

et al. (2012b). A permutation based test developed by James et al. (2009) can be used for testing

statistical significance of the relationship between the NIR spectrum of wheat and their moisture

contents.

Rows 3 and 4 in Figure 5 illustrate the permutation test results. The horizontal line with solid

dot indicates the observed R2 for each method applied to the wheat data. Other dots in the each

plot are permuted R2. We permuted the response variable 1000 times and calculated a permuted

R2 for each permutation. All permuted R2s were well below the observed R2, especially when Wm

and Wv methods are employed, providing very strong evidence of a true relationship between

the NIR spectrum and wheat moisture content. We do believe in this strong relationship as the
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application of near infrared spectroscopic technique for the quantitative analysis of food products

is nowadays well established. Note there is discrepancy in bootstrap estimates and permutation

test of zero relationship when LASSO or Wc method is applied, providing evidence that instability

estimation of LASSO and Wc deteriorates the performance of bootstrapping method.

The ADHD-200 data: We plot the mean coefficient images in Figure 6 (Row 1) for ADHD study.

The mean coefficient images from Wm and Wv are more sparse and arguably more interpretable

than those from wavelet-based LASSO and Wc. The algorithm in Crainiceanu et al. (2012b)

can be extended in 2D image setting to obtain the pointwise and joint confidence intervals for

coefficient image. Row 2 in Figure 6, derived from 95 % pointwise confidence intervals, indicate

brain regions where there are significant association between image predictor and response variable

IQ.

Figure 6 also illustrate the permutation test results for the ADHD data. Similarly, we observed

discrepancy in bootstrap estimates and permutation test of zero relationship when LASSO or Wc

method is applied. From the real data examples, the original wavelet-based LASSO and the

proposed weighted versions show agreement in terms of permutation test results and discrepancy

in bootstrap based confidence interval estimations. This is expected because permutation tests

are based on how well the predictor predicts the response and both the original method and

the proposed methods in general show excellent prediction ability. In contrast, bootstrap-based

approaches perform well only if the underlying methods can produce accurate coefficient estimation

with small variance. The original wavelet-based LASSO are unstable in coefficient estimation,

therefore it deteriorates the performance of bootstrap-based approach.

5 Discussion

The primary contributions of this paper are the investigations of several strategies in the wavelet-

based LASSO context for (a) screening coefficients and for (b) coefficient-specific weighting of

L1 penalizations. These various strategies have been studied both in terms of estimation and

prediction as well as in terms of estimator stability. Additionally, this paper illustrates one of

the strengths of wavelet methods in this context: that the basic extension of functional data

methods from one-dimensional signals to two- or three-dimensional images is straightforward both

conceptually and computationally. One important point to keep in mind is that, due to the greater

natural dimensionality of imaging data, this extension merits further study.

Wavelet-based LASSO shows great prediction but relatively poor estimation accuracy, espe-
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cially in the setting in which the “irrepresentability condition” is violated. In this study, we showed

that this procedure can be improved by adding a pre-screening step prior to the model fitting or,

alternatively, by using a weighted version of wavelet-based LASSO. The proposed approach in gen-

eral shows better prediction ability as well as improved estimation accuracy as compared to the

wavelet-based LASSO. An additional advantage is more stable coefficient function estimations,

as evidenced by results from a simulation study that indicates estimated coefficient functions

obtained by weighted LASSO methods all have significantly lower pointwise variability. Those

advantages are most striking for models with 1D signal predictors but still can be seen for models

with 2D image predictors.

The key point in variable/feature selection is to separate the important predictors from the

unimportant ones. In general, the “importance” of a variable could be defined either based on its

relationship with the response variable, or based on its ability to represent salient features of the

signals/predictors. The former definition corresponds to a supervised approach in the sense that it

considers, in the selection process, information from both the response variable and the predictors,

while the second definition, considering only information from the predictors, corresponds to an

unsupervised approach.

Two of the pre-screening approaches considered here (i.e. screening by correlation and stability

selection) could be considered supervised screening because they consider the relationship of each

predictor to predictions of the outcome variable. On the other hand, the other two approaches

(i.e., screening by magnitude and screening by variance of the wavelet coefficient) can be thought

of as unsupervised because a predictor’s importance is determined based only on its ability to

represent the underlying signals or images. Based on our results shown here, we conclude that the

unsupervised screening approaches tend to work slightly better than the supervised approaches.

It is worth noting that screening by correlation is based on an implicit assumption that the

correlation matrix of the X-variables is not too far away from the identity (Fan and Lv, 2008). If

the correlations among predictors are expected to be high, screening by magnitudes or variance

could be expected to give better model performance. Although screening by stability selection

generally performs well, it comes with considerably higher computational cost and thus might

not be suitable for data with ultrahigh dimension. Notably, we also implemented and tested an

approach of screening by magnitude of covariance, a hybrid of the screening by correlation and the

screening by variance approaches. However, this approach does not tend to outperform screening

by variance in our simulation settings and real data examples.

Weighted LASSO involves incorporating weights into the L1 penalty terms. This distinc-
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tion is subtle but important. When the model violates the “irrepresentable condition”, weighted

LASSO tends to avoid spurious selection of noise predictors by applying less penalization to the

“important” variables and more to the “unimportant” ones. As noted earlier, the meaning of

“importance” depends on whether a supervised or an unsupervised approach is being considered.

For the unsupervised approaches, we are guided by the understanding that many signals can be

sparsely represented in the wavelet domain. By this we mean that the “energy” in a small number

of k coefficients with the largest magnitudes or variance tends to be close to the total energy.

Thus, the wavelet coefficients with small magnitudes or variances contain mostly noise. Based on

this, the importance of each wavelet coefficient can be measured by its magnitude or variance.

We posit that the effect of a screening step and the effect of adding weights to the L1 penalty

terms are similar in nature. Implementation of LASSO results in variable selection that has been

shown to be consistent under certain regularity conditions (Meinshausen and Bühlmann, 2006;

Zhao and Yu, 2006). When those regularity conditions are violated, it becomes more difficult to

separate the important predictors from the unimportant ones. Weighted LASSO heavily shrinks

the unimportant variables by downweighting them, thus making important variables more dis-

tinguishable from unimportant ones. Alternatively, the screening step discards the unimportant

variable in the first place, resulting in improved regularity conditions on the design matrix. There-

fore, both approaches tend to similarly improve the performance of LASSO estimator. We should

also acknowledge that in some cases when no variable violates the “irrepresentability condition”,

it is relatively easy to separate nonzero coefficients from zero ones. Therefore all methods yield

remarkably similar results in terms of both prediction error (data not shown) and estimation

accuracy.

In summary, the performance of wavelet-based LASSO can be improved by including weights

in the L1 penalty terms or by adding a screening step before model fitting, and that either of

these extensions tends to give roughly equal increase in performance. In most situations, we have

found that combining both screening and weighting will in general not further improve results.

Either of these two enhancements has nice theoretical properties and still enjoys the computational

advantage of the wavelet-based LASSO. Implementation of the proposed methods can be found in

the online supplementary materials and will be made available in R package “refund” (Crainiceanu

et al., 2012a).

SUPPLEMENTAL MATERIALS

Simulation: Additional simulation results can be found in the Simulation.pdf file.
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Appendix: The derivation of Theorem 1 and 2 can be found in the Appendix.pdf

supp.zip: The supp.zip file includes datasets used in the study and R code to perform the pro-

posed methods.
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Appendix A Proof of Theorems

Proof of Theorem 1

Proof. Let βSn
be a kn × 1 vector in which Sn entries are nonzero, θ̂ = {θ̂j, j = 1, . . . , kn}

be the estimated sample wavelet coefficient magnitude, and ρkn be the smallest eigenvalue of

Σkn = 1
n
ZT

knZkn . Without loss of generality, we assume the first Sn entries in βSn
are nonzero,
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and assume columns of Zkn are standardized such that each column has mean of 0 and standard

deviation of 1, and the first Sn elements of θ are nonzero. By Parseval’s theorem, we have

||η̂n − η||2L2 = ‖ β̂kn − βSn
‖2 +

kn∑
j=Sn+1

β2
j +

Nn∑
j=kn+1

β2
j +

∞∑
j=Nn+1

β2
j . (A.1)

The first term on right hand side of equation (A.1) stands for model estimation error, the second

term is due to thresholding error, the third term is due to screening error, and the fourth term

is due to finite sampling error which depends on how densely we sample the functional predictor.

By assumption (a4) and Theorem 9.5 of ?,

∞∑
j=Nn+1

β2
j = o(N−2qn ). (A.2)

By assumption (a5) and Theorem 9.10 of ?,

kn∑
j=Sn+1

β2
j +

Nn∑
j=kn+1

β2
j =

Nn∑
j=Sn+1

β2
j = o(S1−2/r

n ). (A.3)

We show the convergence rate of ‖ β̂kn−βSn
‖2 below. Let l(β) = 1/n||Y−ZT

knβ||
2+
∑kn

j=1 λnθ̂
−1
j |βj|,

δ = ||β̂kn − βSn
||, and β̂kn − βSn

= δu with ||u|| = 1. Given equation (4), we have

l(β̂kn)− l(βSn
) = −2δn−1ε∗TZT

knu + δ2n−1uTZT
knZknu +

kn∑
j=1

λnθ̂
−1
j (|β̂j| − |βj|) ≤ 0. (A.4)

We know
∑kn

j=1 λnθ̂
−1
j (|β̂j| − |βj|) ≥

∑
j∈Hn

λnθ̂
−1
j (|β̂j| − |βj|). By reverse triangle inequality and

Cauchy-Schwarz inequality, we have∑
j∈Hn

λnθ̂
−1
j (|β̂j| − |βj|) ≥ −

∑
j∈Hn

λnθ̂
−1
j (|β̂j − βj|) ≥ −δ

√∑
j∈Hn

(λnθ̂
−1
j )2. (A.5)

Combine (A.4) and (A.5), we have

δρkn ≤ δuTΣknu ≤ 2||n−1ZT
Hn
ε∗||+

√∑
j∈Hn

(λnθ̂
−1
j )2. (A.6)

We next show the convergence rate of ||n−1ZT
knε
∗|| in equation (A.6). Given equation (4), a

constant C, and ξ2i = (
Nn∑

i=kn+1

zijβj)
2,

E(||n−1/2ZT
knε
∗||2) = E(n−1εTZT

knZknε) + n−1ξTZT
knZknξ

≤ σ2tr(Σkn) + C/n

n∑
i=1

ξ2i

≤ σ2kn + 1/n
n∑

i=1

(
Nn∑

j=kn+1

z2ij

)(
Nn∑

j=kn+1

β2
j

)
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By assumption (a4), E(||n−1/2ZT
knε
∗||2) = O(kn) + o(k

1−2/r
n ). By Markov’s inequality,

||n−1ZT
Hn
ε∗|| = Op((kn/n)1/2) + op(k

1/2−1/r
n /

√
n). (A.7)

By assumption (a2), we have
√ ∑

j∈Hn

(λnθ̂
−1
j )2 = op(n

−1/2). Combining this with (A.7) and (A.6),

we have

δ = ‖ β̂kn − βSn‖ = Op

(
k
1/2
n

n1/2ρkn

)
. (A.8)

By (A.2), (A.3), and (A.8), this implies

‖ η̂n − η‖ 2
L2 = Op

(
kn
nρ2kn

)
+ o(k1−2/rn ) + o(N−2qn )

Proof of Theorem 2

Proof. Following Johnstone and Lu (2009), we assume, without loss of generality, that wavelet

coefficient population magnitude θ1 ≥ θ2 ≥ · · · ≥ θN > 0. We also assume the coefficient of

variation for each wavelet coefficient is bounded by a constant C0 (i.e., Ch = σh/θh, 0 < Ch <

C1, h = 1, 2, . . . , N), where σ2
h, h = 1, . . . , N is the population variance of wavelet coefficient.

Let γn be a suitably chosen small positive number, and d be a suitably chosen constant. Let

zh ∼ N(µh, σ
2
h), θh = |µh| ∀h, and Z ∼ N(0, 1). For any fixed constant t and l ∈M ,

θ̂h ≤ t for h ≥ k, h 6= l and θ̂l ≥ t⇒ θ̂l ≥ θ̂(k).

If we let t = θk + γn and θl ≥ d× t with d > 1, we have

P (θ̂l < θ̂(k)) ≤
∑
h≥k

P (θ̂h > t) + P (θ̂l < t) =
∑
h≥k

{
P

(
Z >

√
n(t− θh)

σh

)
+ P

(
Z <

√
n(−t− θh)

σh

)}
+ P

(√
n(−t− θl)

σl
< Z <

√
n(t− θl)
σl

)
=
∑
h≥k

{
P

(
Z >

√
n(t/θh − 1)

σh/θh

)
+ P

(
Z >

√
n(t/θh + 1)

σh/θh

)}
+ P

(
Z >

√
n(1− t/θl)
σl/θl

)
− P

(
Z >

√
n(1 + t/θl)

σl/θl

)
≤
∑
h≥k

{
P

(
Z >

√
n(γn/θk)

C0

)
+ P

(
Z >

√
n(γn/θk + 2)

C0

)}
+ P

(
Z >

√
n(1− 1/d)

C0

)
= (N − k + 1) Φ

(
−
√
nγn/θk
C0

)
+ (N − k + 1) Φ

(
−
√
n(2 + γn/θk)

C0

)
+ Φ

(√
n(1/d− 1)

C0

)
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The bound P (FE) ≤ (N − k + 1) Φ
(
−
√
n

C0b

)
+ (N − k + 1) Φ

(
−
√
n(2b+1)
C0b

)
+ Φ

(√
n(1−d)
dC0

)
follows

from γn =
√
log(n)/n, θk = bγn with b > 0, and a suitably chosen constant d > 1.
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Figure 3: Estimated mean and standard deviation functions of LASSO and weighted LASSO with

different weights at R2 = 0.9 based on 200 simulated datasets. Y axis ranges from 0 to 55 for

LASSO, and from 0 to 6 for others.
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Figure 4: Estimated mean and standard deviation functions of LASSO with different screening

strategies at R2 = 0.9 based on 200 simulated datasets
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Figure 5: The wheat data: Estimated coefficient function with their corresponding pointwise

(light gray) and joint (dark extensions) confidence intervals (Rows: 1-2) and permutation tests to

assessing statistical significance of the relationship (Rows: 3-4).
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