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Summary
Regional analysis of volumes examined in normalized space (RAVENS) are transformation im-
ages used in the study of brain morphometry. In this paper, RAVENS images are analyzed using
a longitudinal variant of voxel-based morphometry (VBM) and longitudinal functional princi-
pal component analysis (LFPCA) for high-dimensional images. We demonstrate that the latter
overcomes the limitations of standard longitudinal VBM analyses, which does not separate regis-
tration errors from other longitudinal changes and baseline patterns. This is especially important
in contexts where longitudinal changes are only a small fraction of the overall observed variability,
which is typical in normal aging and many chronic diseases. Our simulation study shows that
LFPCA e↵ectively separates registration error from baseline and longitudinal signals of interest
by decomposing RAVENS images measured at multiple visits into three components: a subject-
specific imaging random intercept that quantifies the cross-sectional variability, a subject-specific
imaging slope that quantifies the irreversible changes over multiple visits, and a subject-visit
specific imaging deviation. We describe strategies to identify baseline/longitudinal variation and
registration errors combined with covariates of interest. Our analysis suggests that specific re-
gional brain atrophy and ventricular enlargement are associated with multiple sclerosis (MS)
disease progression.
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1. Introduction

Magnetic resonance imaging (MRI) is commonly used in the study of brain structure. Many stud-
ies are based on measurements of tissue volumes within a number of predefined regions of interest
(ROIs); for example, see Bartzokis and others (2001) and Bermel and others (2003). Although
ROI analysis can directly quantify the volume of structures and reduce the dimensionality of
images, the ROIs have to be defined before the analysis is conducted. In disease studies, this
can be di�cult without su�cient prior knowledge about what and how various regions will be
a↵ected. Moreover, ROI based measurements can be time-consuming and labor-intensive. The
results of the analysis will depend on the quality of the ROI delineation and thus depend upon the
experience of the operator and accuracy of segmentation algorithms. Voxel-based morphometry
(VBM) is a complementary technique that measures local brain volume changes in a normalized
space and thus does not su↵er from these limitations (Ashburner and Friston, 2000, 2001).

To quantify local brain volumes, we focus here on the Regional Analysis of Volumes Examined
in Normalized Space (RAVENS) approach, using tissue-preserving image warping (Goldszal and
others, 1998; Davatzikos, 1998; Davatzikos and others , 2001; Shen and Davatzikos, 2003) though
the method of analysis in principle extends to other morphometric images. RAVENS registers
each subject to a template of anatomy so that the intensities of the RAVENS image represents
regional volumes relative to those of template (Shen and Davatzikos, 2002). Figure 1 displays
examples of RAVENS images in the template space. The first subject has much larger ventricles
than the second subject (and template). Its RAVENS image of ventricles is displayed underneath
the associated T1 image with red and blue colors representing higher and lower intensities, re-
spectively. Subject 1 has larger ventricular volume, depicted by brighter ventricular intensities
in the RAVENS image. Similarly, the second brain, having a smaller ventricle than that of the
first subject, has lower intensities in its RAVENS image. Statistical VBM analysis of RAVENS
images (RAVENS-VBM) is applied to the resulting spatial distributions of gray matter (GM),
white matter (WM), and ventricular cerebrospinal fluid (CSF). Local atrophy or enlargement can
be detected if the spatial distributions of GM, WM, and CSF significantly change across subjects.

In many disease studies, longitudinal patterns of brain structure between and within con-
trol and patient groups are of interest. Many studies have been based on ROI volume mea-
surements followed by statistical analysis, such as a linear mixed model. Several neuroimaging
software platforms, including: FSL (Smith and others , 2004), the SPM-VBM toolbox (available
at http://dbm.neuro.uni-jena.de/vbm) and SurfStat (Worsley and others, 2009), support flexi-
ble longitudinal models. Statistical inference of the contrast between two di↵erent time points
is the most commonly used approach (Bendfeldt and others, 2011). Numerous other approaches
for longitudinal imaging data have been proposed for prediction. The methods include support
vector machine classifier (Chen and DuBois Bowman, 2011) and bayesian spatial model (Derado
and others, 2012).

Current statistical approaches have three major limitations: 1) continuous longitudinal tra-
jectories are not fully investigated; 2) they do not distinguish among longitudinal changes, regis-
tration errors, or technological and biological scan-to-scan variability; 3) an integrated framework
of cross-sectional and longitudinal analysis is not provided, i.e. cross-sectional and longitudinal
analyses are applied separately.

Our main goal is to introduce a new statistical framework for longitudinal VBM analysis,
particularly using RAVENS images. To overcome the limitations of the current existing statisti-
cal analysis, we consider a data-driven analysis to provide a more complete statistical framework
to analyze high-dimensional longitudinal brain images. A framework that allows this conceptual
partition of variability is longitudinal functional principal component analysis (LFPCA) (Greven
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and others, 2011). This method was originally proposed for low to moderate dimensional func-
tional data and was extended to high dimensional data by Zipunnikov and others (2012). The
main idea of high-dimensional inference is based on projecting onto the intrinsic low dimensional
space spanned by high-dimensional vectors (Di and others , 2009; Zipunnikov and others , 2011).
More precisely, we start by modeling the observed data with high-dimensional longitudinal func-
tional principal component analysis (HD-LFPCA). Each RAVENS ventricular image is unfolded
into a p ⇥ 1 dimensional vector, where p ⇡ 80, 000 is the number of voxels in the RAVENS
ventricular image. These vectors are decomposed in their baseline, longitudinal and visit-to-visit
components; each component is then estimated from the data. The method takes only a few
minutes on a standard PC.

In this paper we focus on LFPCA as a useful tool for analyzing longitudinal images, partic-
ularly to quantify cross-sectional and longitudinal variability in the data. The simulation study
illustrates the application of LFPCA to a simplified imaging setting. It demonstrates that LFPCA
e↵ectively separates longitudinal, cross sectional, and other variations. Notably, the simulation
study shows that LFPCA can separate registration errors from baseline and longitudinal compo-
nents of interest.

The rest of this paper is laid out as follows: Section 2 reviews LFPCA and estimation pro-
cedures for high-dimensional data. Section 3 illustrates how to apply LFPCA to brain imaging
data and o↵ers interpretation of results. Section 4 describes a longitudinal multiple sclerosis (MS)
study with LFPCA results.
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2. Methods

In this section, we provide a description of the original LFPCA approach developed by Greven
and others (2011) and its extension for high-dimensional data analysis (Zipunnikov and others,
2012).Throughout this section, we refer to both as LFPCA.

2.1 Random Intercept and Random Slope Model

Consider a longitudinal brain imaging study with subjects labeled by index i with occasion
indexed by j and scan time by variable tij for j = 1, . . . , Ji. Each image is unfolded into a p-
dimensional column vector yij(v); the index v of each entry corresponds to a particular location in
the brain for each subject and visit in normalized space. A random slope and random intercept
model is commonly used to analyze longitudinal data, which has been extended to functional
(Greven and others, 2011) and imaging (Zipunnikov and others, 2012) studies as follows:

yij(v) = ⌘(v, tij) + xi,0(v) + xi,1(v)tij +Wij(v), (2.1)

where yij(v) denotes the image intensity at voxel v, ⌘(v, tij) is a fixed main e↵ect, and xi,0(v) and
xi,1(v) denote the random intercept and random slope for subject i, respectively. The termWij(v)
is a random subject-visit specific imaging deviation, which is assumed to be a zero mean, second-
order stationary random process uncorrelated with Xi(v) = (xi,0(v), xi,1(v))

>. The covariance
operators of Xi(v) and Wij(v) are denoted as KX(v1, v2) and KW (v1, v2), respectively.

While this is a natural and relatively simple model for longitudinally observed data, the scale
of the problem requires aggressive dimensionality reduction. LFPCA reduces dimensionality by
projecting onto the subspaces which explain principal directions of variation in the data. In
model (2.1), there are two sources of variation: subject-to-subject, captured by Xi, and visit-to-
visit within a subject, captured by Wij and the model assumption on Xi and Wij in (2.1) allows
us to partition the variation of the data and LFPCA models latent processes Xi and Wij using
a Karhunen-Loeve (K-L) expansion (Karhunen, 1947; Loève, 1948).

The K-L expansion decomposes the two latent processes as Xi(v) =
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LFPCA truncates K-L representations and represents observed data through a linear mixed-
e↵ects model:

yij(v) = ⌘(v, tij) +
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where “· ⇠
�

µ1, µ2;�2
1 ;�

2
2 ; ⇢

�

” denotes that a pair of variables has a distribution with mean
(µ1, µ2), variance �

2
1 ,�

2
2 , and correlation ⇢. We assume that �k1 > �k2 if k1 6 k2. Since Xi(v)

and Wij(v) are uncorrelated, the scores {⇠ik}1k=1 and {⇣ijl}1l=1 are also uncorrelated. A very
important characteristic of model (2.2) is that both NX and NW are expected to be small in
most applications.
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For the unfolded vector, (2.2) can be rewritten as
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(2.3)

where yij = (yij(v1), . . . , yij(vp))
> is a p ⇥ 1 dimensional vector; �X,0

k ,�X,1
k , and �W

l are p ⇥ 1
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(⇣i1, . . . , ⇣iNW )>.
In brain imaging data analysis, LFPCA can separate biological signals from non-biological

artifacts. For example, registration errors due to structural di↵erences between subjects can be
captured by baseline subject-specific components �0

X and scanner variability can be captured by
visit-to-visit components �W . This will be illustrated via an extensive simulation experiment in
Section 3.

The fixed e↵ect ⌘(v, tij) can be estimated in a number of ways (Greven and others , 2011).
The analyses in Sections 3–4 simply use the sample mean across all the image observations. Once
⌘(v, tij) is estimated by the sample mean ⌘̃(v, tij), the longitudinal eigenanalysis is applied to the
residual images ỹij(v) = yij(v)� ⌘̃(v, tij) that are modeled as follows:

ỹij = �0
X⇠i + tij�

1
X⇠i +�W ⇣ij . (2.4)

2.2 Estimation

Zipunnikov and others (2012) modified the original approach of Greven and others (2011) and
developed a method of moments estimator based on quadratics of ỹij . The p ⇥ p-covariance of
ỹij1 and ỹij2 is given by

E
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where �i,j = 1 if i = j and �i,j = 0 otherwise. Model (2.5) can be rewritten in terms of unfolded

vectorsKv =
�

vec (K00) , vec (K01) , vec (K10) , vec (K11) , vec
�

KW
� 

and fij1j2 = (1, Tij2 , Tij1 , Tij1Tij2, �j1,j2)
>

such that E vec
�
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we obtain a moment matrix identity for the p2⇥m matrix Y: E Y = KvF, where m =
PN

i=1 J
2
i .

Then covariance parameters Kv can be unbiasedly estimated by using ordinary least squares

(OLS): bKv = YF>
⇣

FF>
⌘�1

.

The covariance operatorsKX andKW are 2p⇥2p and p⇥p dimensional, respectively. For high-
dimensional functional data, storing or diagonalizing these matrices is not feasible. Zipunnikov
and others (2012) proposed HD-LFPCA, a novel estimation approach that takes advantage of
an intrinsically small dimension of the space spanned by high-dimensional data vectors. First we
form a p⇥Ji dimensional matrix ỹi, where column j corresponds to a demeaned-RAVENS image
obtained for subject i at visit j. The p⇥J dimensional data matrix ỹ = (ỹ1; . . . ; ỹn) is formed by
column-binding the blocks of data corresponding to each subject, where J =

Pn
i=1 Ji. The data

matrix can be decomposed as ỹ = VSU> using a singular value decomposition (SVD) approach.
In the RAVENS application described in Section 4, J = 148. Equation (2.4) can be rewritten as

ỹij = VSUij = �0
X⇠i + tij�

1
X⇠i +�W ⇣ij . (2.6)
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By multiplying with V> to the left, we have

SUij = V>�0
X⇠i + tijV

>�1
X⇠i +V>�W ⇣ij

= A0
X⇠i +A1

X⇠i +AW ⇣ij .
(2.7)

We estimate Â0
X , Â1

X , and ÂW as described earlier, and estimate �̂0
X = VÂ0

X , �̂1
X = VÂ1

X ,
and �̂W = VÂW . Note that multiplying by V> in equation (2.6) reduces the model to its
low-dimensional form (2.7), without losing the original correlation structure of the data. Once
inference is conducted in model (2.7), then quantities of interest from model (2.6) can be estimated
by pre-multiplying equation (2.7) by V.

Principal scores ⇠i and ⇣ij are estimated via Best Linear Unbiased Predictions (BLUPs) as

follows. The stacked vector of ith subject data, vec (ỹi) =
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and 1Ji is a Ji⇥1 vector of ones. Then the scores can be estimated as !̂i =
⇣

B̂>
i B̂i

⌘�1
B̂>

i vec (ỹi).

Due to linearity the estimated scores are the same in both models (2.6) and (2.7). Details of the
matrix calculation and additional theoretical results of HD-LFPCA can be found in Zipunnikov
and others (2012).
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3. Simulation

In this section, we present a simulation study to test the performance of LFPCA in RAVENS-
VBM analysis. We investigate if LFPCA can identify subject-specific signals from noise, par-
ticularly registration errors, which often dominate signals in VBM analyses. Also, we identify
cross-sectional and longitudinal variation when they exist.

3.1 Simulation Setup

We design a simulation study to mimic longitudinal analysis of RAVENS images. For the purpose
of illustration, we use 2D images with 200 ⇥ 200 = 40, 000 pixels. We generate images from 50
subjects (N = 50) with three follow-ups. To replicate RAVENS processing routine, we assume
that all images are registered to a template space. Figure 2 displays simulated RAVENS images
from 5 randomly chosen subjects. Each column represents four longitudinally collected images of
the same subject.

Each image mimics four canonical brain structures: background (B), white matter (W), ventri-
cles (V), and gray matter (G). Those four components are simplified and shown as a background,
a big square, a small square inside the big square, and a rectangle at the bottom, respectively.
Registration errors are introduced via random rigid shifts of simulated structures as described
below.

The shapes of G, V and W are modeled as follows: the side lengths of W and V were generated
from 2 ·bN(90, 2)c and 2 ·bN(30, 0.5)c, where b·c is the floor function. The width of G is the same
as that of W in the same image and the height is generated from bN(10, 1)c. For visit-to-visit
registration errors, all images are shifted to both x- and y-directions. The amount of each shift
is generated from bN(0, 1)c for W and bN(0, 0.25)c for V. In Figure 2, the sizes of G, V and W
are di↵erent across subjects and their locations vary at di↵erent visits.

The intensities of W, V and G are generated fromN(55, 5),N(15, 5) andN(20, 5), respectively.
For the longitudinal variation, we imposed an increasing trend (expansion) for V with the random
slope generated from N(2, 4), and atrophy for G with the random slopes generated from N(�2, 4).
In Figure 2, the images from the first subject, which are displayed at the first column, show the
longitudinal patterns. In the images, the color of V changes from darker gray to brighter gray,
which represents longitudinal enlargements of V. Similarly, the colors of W and G changed to
darker colors, which represent longitudinal atrophy.

3.2 Simulation Results

Figure 3 shows the first five pairs of subject-specific components (�X). The baseline components
(�0

X) are displayed in the top row and their corresponding longitudinal components (�1
X) are

displayed in the second row. Each image is colored with a blue(negative)-gray(0)-red(positive)
color scheme. The first subject-specific component (Figure 3 (a) first column) represents cross-
sectional variations of the intensities of the W. The second component captures subject-specific
registration errors, which only depend on cross-sectional variation. The third and fourth compo-
nents represent the size of V and G. The fifth component shows longitudinal patterns of V and
G. For a subject with positive score, the area V enlarges over the time and that of G shrinks,
matching the truth used in simulation.

One useful feature of LFPCA is that contributions of the longitudinal and baseline components
within each subject-specific component can be quantified on a [0, 1] scale. A subject-specific eigen-
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vector is the stacked vector of baseline and longitudinal components: �X,k =
n

�0
X,k

>
,�1

X,k
>
o>

,

such that k�X,kk2 = k�0
X,kk2 + k�1

X,kk2 = 1. For each component, the variation or the con-

tribution of the longitudinal component can be calculated as
k�1

X,jk
2

k�0
X,kk2+k�1

X,kk2 . Combined with

the contribution of each subject-specific component to the total variation, Figure 3 (b) displays
variations explained by the first 10 subject-specific components with the proportion of the lon-
gitudinal components within each subject. Each bar plot intensity represents the amount of
variation explained by each subject-specific component and is comprised of variations explained
by the longitudinal component (magenta) and the baseline component (cyan). The top of each
bar displays numerical values of the variation explained by the subject-specific component with
the variation explained by the longitudinal component within the subject-specific component in
parenthesis. Note that the fifth principal component has the highest longitudinal-baseline ratio
among all ten components. This provides a strong indication that the fifth component should be
essentially treated as a longitudinal component. Using both visual and quantitative methods, we
can conclude that the first four components represent baseline variation and registration error
and the fifth component reveals longitudinal variation. In the data set, the longitudinal variation
and baseline variations are independent, which agrees with the simulation setting.

Figure 3 (c) displays the boxplots of first 10 subject-specific LFPC scores. A subject-specific
LFPC score represents every subject-specific LFPC in terms of voxel intensities as a distance from
the mean image along the appropriate subject-specific LFPC axis. This score is a weighted sum
of the RAVENS image intensities, with weights proportional to the strength of the relationship
between the LFPCs and RAVENS map. For the first four components, the scores represent
baseline sizes/shapes. For example, a subject with a positive value of the first LFPC score has
larger W. A subject with a positive value of the fifth LFPC score has longitudinal enlargement
of V and longitudinal atrophy of G. Principal scores can be e�ciently utilized as explanatory
variables representing particular brain regions in regression analysis relating them to covariates
of interest such as a disease status.

An advantage of LFPCA is its ability to couple baseline and longitudinal variation. The
longitudinal component is added to the baseline with the time used as a multiplicative weight.
Figure 4 illustrates the temporal trajectory of principal component loadings. We display only
the first component, which does not appear to change over time. This pattern is replicated in
the first four components. This indicates that the first four components mostly represent baseline
variation. The fifth component loading does appear to change over time, while the baseline loading
has relatively lower intensities compared to the longitudinal loading.

Figure 5 (a) displays the first ten components of the imaging deviation. All components appear
to be registration errors. Figure 5 (b) displays the barplots of the variation explained by the first
ten visit-to-visit components. Roughly 31% of the total variation is explained by visit-to-visit
components. No patterns can be detected for the scores of the imaging deviation.

To summarize, our simulation studies convincingly demonstrate the power and flexibility of
LFPCA to address some of key challenges of brain imaging. In particular, LFPCA managed to
estimate and separate longitudinal and cross-sectional variation in a complex imaging simulation
design with registration errors. The main part of the analysis can be automated and performed
robustly with no operator input.
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4. RAVENS Image Analysis

In this section, we analyze structural images obtained from MS patients using both linear mixed
models with random intercepts and slopes and LFPCA.

High resolution 3D magnetization-prepared rapid acquisition of gradient echoes (MPRAGE;
acquired resolution: 1.1mm ⇥ 1.1mm ⇥ 1.1mm; TR:⇠10ms; TE:6ms; TI=835ms; flip angle: 8deg;
SENSE factor:2; averages:1) were acquired on a 3.0 T MRI scanner (Intera, Philips Medical
Systems). Forty eight MS patients (aged 42±12 years at baseline) were enrolled in a longitudinal
study of brain volume change. The study population included 33 female and 16 male patients;
28 patients with relapsing-remitting MS (RRMS), 13 patients with secondary progressive MS
(SPMS), 5 patients with primary progressive MS (PPMS) and 2 patients with clinically isolated
syndrome (CIS). One hundred forty eight T1 images have been acquired, with three images per
subject for 44 subjects and 4 images per subject for 3 subjects. The average time interval between
scans was 368 days (±27). All images were spatially normalized via registration of T1 maps into
the mean template, generated using ANTS (Avants and others, 2010, 2011) from 30 randomly
chosen MS patients among those with more than three visits.

All T1 images were segmented into GM, WM, VN, and lesions with Lesion-TOADS (Shiee and
others, 2010). Lesions were then relabeled as WM for all subsequent processing. After segmenta-
tion, the final tissue maps of GM, WM, and VN were normalized using HAMMER-SUITE (Shen
and Davatzikos, 2002) to generate RAVENS images. Finally, the RAVENS maps were separately
smoothed with 4 mm FWHM using SPM8.

4.1 Classical VBM Analysis using Linear Mixed Model

First, we applied traditional VBM analysis using a linear mixed model to find a longitudinal trend.
Many previous longitudinal studies have applied pairwise comparisons between two time points
(Driemeyer and others, 2008). This study attempts to discover constant longitudinal trends over
the time, i.e., focusing on the atrophy or enlargement rates. This may elucidate disease progression
patterns of the patients. For the ith subject jth visit, the RAVENS image at voxel v follows the
model:

yij(v) = �

0
i (v) + �

1
i (v)tij + ✏ij(v), (4.8)

where �

0
i (v) ⇠ N(�0(v),�2

0(v)), �

1
i (v) ⇠ N(�1(v),�2

1(v)), ✏ij(v) ⇠ N(0,�2
✏ (v)).

The time variable Tij represents the number of days since the first (baseline) visit. This
analysis focuses on the population mean of the longitudinal trend �

1
1(v). After an FDR correction

(Benjamini and Yekutieli, 2001) combined with cluster level thresholding, there are significant
clusters with spatial extent more than 20 voxels. Table 1 shows information about the significant
clusters, including cluster size, maximum or minimum t-values within each cluster and its location,
and center of gravity of the clusters. We do not include an image of VBM results, since the clusters
are very sparse having small cluster sizes. The results show that the longitudinal patterns do not
appear to be significant for the most of brain regions. We suspect that it is because of the large
variation within and between images for this very heterogeneous disease. We apply HD-LFPCA
to uncover more subtle underlying variation.

4.2 HD-LFPCA results

We present the LFPCA results for ventricular RAVENS images in Figure 6. Figure 6 (a) and
(b) display the amount of variation explained by subject-specific components and subject and
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visit-specific components to the total variation, respectively. Figure 6 (a) displays variation ex-
plained by the first 10 subject-specific components along the proportion of longitudinal variation
represented within each subject-specific component. Each bar’s height represents the percent of
variation explained by each subject-specific component. It is color coded by the proportion of
the variation explained by the longitudinal component and the baseline component. The top of
each bar displays the variation explained by the subject-specific component; the fraction of that
variation that is explained by the longitudinal component is given in parentheses.

The first subject-specific LFPC explains 45% of the overall variation, almost completely due
to the cross-sectional part. The longitudinal part explains 81% of the variation within the second
subject-specific LFPC. Figure 6 (b) displays variation explained by the first 10 subject-visit-
specific components to the total variation. The remaining LFPCs explain less than 1% of the
total variation.

Most of the subject-specific LFPCs are driven by cross-sectional variation, which possibly
include registration errors. The longitudinal changes are mainly captured by the second LFPC,
which explains about 8% of the total variation. This provides an explanation as to why traditional
VBM using linear mixed models did not find meaningful longitudinal patterns.

Figures 7–8 show the first two pairs of LFPCs of ventricles. Figure 7 (a) and (b) show the
baseline and longitudinal components of the first LFPC. The LFPC loadings are color-coded
with a red-yellow color scheme for positive values and blue-cyan for negative values. The first
components reveal baseline ventricular morphometric variation, while the longitudinal component
has relatively lower intensities. To investigate the characteristics of the first component, we fit
the linear regression with covariates of interest and volumes of 6 ROIs obtained by the Lesion-
TOADS segmentation algorithm. Figure 7 (c) displays scatter plots of the LFPC scores with
covariates, baseline age, baseline Expanded Disability Status Scale (EDSS) score, and volumes
of 6 ROIs (thalamus, ventricle, cortical gray matter volume, caudate, sulcal CSF, putamen). The
dashed lines overlaid on the scatter plots are the linear regression lines and are colored as red
when the linear trend is significant and as green otherwise.

The significant correlation between the first subject-specific score and baseline VN volume
(first row, fourth column) confirms that the first component represents baseline variation (R2:
0.9684), i.e., a subject with a positive score has larger ventricles at the baseline. The scores are
significantly correlated to the subject’s baseline age (R2: 0.1402) and three gray matter ROIs
(thalamus, caudate, and putamen).

Figure 8 (a) and (b) display the baseline and longitudinal components of the second subject-
specific component, respectively. A subject with a positive score tends to have a larger regional
volume at the baseline (yellow-red colored voxels in Figure 8 (a)) and longitudinal enlargement.
The second subject-specific scores have significant relations with the baseline age, EDSS, thalamus
volume, VN volumes, sulcal CSF volume and putamen volume. The second component scores
have higher correlation with baseline age (R2: 0.2371) and EDSS (R2: 0.2053) than the first
component scores. This indicates that the longitudinal enlargement of ventricles is related to
disease progression.

5. Discussion

In this manuscript, we described and evaluated a coherent methodology for the study of longi-
tudinal RAVENS - or other methodological - volumetric imaging studies. Our simulation studies
demonstrate that LFPCA tightly links the analysis methodology with the morphomertic image
processing stream. We demonstrated that LFPCA can uncover interesting, yet subtle, directions
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of longitudinal variation in a case where independent voxel-level investigations fail. Of note, this
study represents the first application of the high dimensional variation of LFPCA to RAVENS
images. Related work includes Zipunnikov and others (2012), who investigated DTI imaging data
and Zipunnikov and others (2011) and Zipunnikov and others (2011), who studied RAVENS im-
ages with cross-sectional and clustered (but not longitudinal) settings. Moreover, this manuscript
represents the first application of LFPCA to morphometric imaging in multiple sclerosis.

A key insight from the simulation studies is the ability of LFPCA to uncover interesting
directions of variation in the presence of errors from registration to a template. Previously, reg-
istration errors were handled via either extremely aggressive smoothing during post-registration
processing or by improved normalization algorithms. While improved algorithms are certainly a
desirable goal, all normalization algorithms must be tuned and su↵er from trade o↵s (such as
bias/variance). Our results suggest the possibility of employing less aggressive normalization.

In our study of MS, we found that the majority of variation is focused in cross-sectional
components. This will likely be true in any study of adults, as variation in head size, brain size
and intracranial volume will vary far more substantially than longitudinal decline, not unlike
if one were to study adult cross-sectional and longitudinal trends in heights. It would be of
interest to apply LFPCA to developmental populations or populations with severe progressive
brain disorders significantly after disease onset.

We have applied similar analysis to gray matter and white matter RAVENS images. Figure
9 shows variation explained by first 10 subject-specific LFPCs in gray matter and white mat-
ter RAVENS images. In gray matter, around 20% variation comes from the longitudinal part
across all subject-specific LFPCs. Lower proportions of variation, around 15%, are explained by
the longitudinal part in white matter. Unlike the ventricles, any subject-specific component of
gray and white matter is not dominated by the longitudinal part. We speculate it is due to spa-
tial heterogeneity of longitudinal brain atrophy, which may depend on subject-specific disease
progression.

The correlation between subject-specific LFPC scores of ventricles and EDSS indicates that
EDSS is better associated with longitudinal ventricular enlargement than baseline ventricular size.
This implies ventricular enlargement is a sensitive measurement of disease progression. Some
cross-sectional MS patient studies have reported that brain atrophy is related to irreversible
clinical disability in (MS) and ventricular enlargement may be a sensitive marker of this tissue loss
that is seen at all stages of MS (Turner and others, 2001; Benedict and others, 2005; Hildebrandt
and others, 2006; Tekok-Kilic and others, 2007). In existing longitudinal studies, longitudinal
ventricular enlargement and gray matter atrophy have been detected in both ROI and VBM
with paired t-test or factor models (Simon and others, 1999; Dalton and others, 2002, 2006;
Kalkers and others , 2002; Sepulcre and others , 2006; Lukas and others , 2010; Bendfeldt and
others, 2009), which agrees with our finding. Unlike other methods, LFPCA is able to show
spatially heterogeneous patterns of longitudinal enlargement, which ROI based methods cannot
provide.
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