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Abstract 40 

An aborted mid-gestational male Steller sea lion fetus with an attached placenta 41 

was recovered on the floor of an open floating capture trap located off Norris Rock near 42 

Denman Island, British Columbia.  Viral culture of the placenta demonstrated cytopathic 43 

effect. Although no specific signal was obtained in microarray experiments using RNA 44 

obtained from viral culture, elution and sequence analysis revealed the presence of a 45 

reovirus. Complete genome pyrosequencing led to the identification of an orthoreovirus 46 

that we have tentatively named Steller sea lion reovirus (SSRV). Phylogenetic analysis 47 

revealed similarity between SSRV and orthoreoviruses of birds, bats and other 48 

mammals that suggests potential for interspecies transmission.   49 

50 



 4 

Introduction 51 

 Steller sea lions (Eumetopias jubatus) are large otariid pinnipeds found in the 52 

northern Pacific.  The genetically distinct eastern North American population of Steller 53 

sea lions is comprised of animals born on rookeries from central California to northern 54 

Southeast Alaska and is listed as a threatened species (Pitcher et al., 2007) 55 

Systematic studies of neonatal mortality of pinnipeds have focused on antarctic 56 

fur seals (Arctocephalus gazella), northern fur seals (Callorhinus ursinus), and harbor 57 

seals (Phoca vitulina) (Baker & Doidge, 1984; Keyes, 1965; Steiger et al., 1989). 58 

Reovirus-like particles were observed in one sample from Smith Island in Puget Sound, 59 

Washington, from a harbor seal pup that was emaciated even though its stomach 60 

contained fresh milk (Steiger et al., 1989). These particles were 80 nm in diameter and 61 

appeared identical to others observed in tissues of California sea lions (Zalophus 62 

californianus), Steller sea lions and northern fur seals in the northern Pacific (Steiger et 63 

al., 1989).  64 

The virus family Reoviridae includes 15 recognized genera of viruses (Mertens et 65 

al., 2005), including the recently described Mimoreovirus and Cardoreovirus, and 66 

Dinovernavirus, the genomes of which comprise 9-12 linear segments of dsRNA (Attoui 67 

et al., 2006; Attoui et al., 2005; Day, 2009; Mohd Jaafar et al., 2008). Reoviruses have 68 

been found in many organisms, including vertebrates, arthropods, protists, fungi and 69 

plants. Those that infect aquatic organisms include members of the genera Aquareovirus 70 

and Mimoreovirus, which have 11 segments, and Cardoreovirus, which have 12 71 

segments. The International Committee on Virus Taxonomy (ICTV) recognizes five 72 

species in the genus Orthoreovirus (Chappell et al., 2005). One species (Mammalian 73 

orthoreovirus) includes all the nonfusogenic mammalian orthoreoviruses; all other 74 

species induce syncytium formation. A second species comprises the avian reoviruses 75 

(ARV), including those from chicken, Muscovy duck, turkey and goose. The third species 76 
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is represented by Nelson Bay virus (NBV), an atypical syncytium-inducing mammalian 77 

reovirus, isolated from a grey-headed flying fox (Pteropus poliocephalus). Recently, 78 

viruses related to NBV were obtained from bats (Pulau virus, (Pritchard et al., 2006)) and 79 

humans (Melaka virus, (Chua et al., 2007); Kampar virus,(Chua et al., 2008); and 80 

HK23629/07, (Cheng et al., 2009)). Phylogenetic analyses of the few available genome 81 

segments demonstrated that although NBV were more closely related to ARV isolates 82 

than to other mammalian or reptilian orthoreoviruses, they represent a distinct species. 83 

The main arguments were: (1) the extent of sequence divergence in the sigma-class 84 

core and major outer capsid protein; (2) the absence of evidence for reassortment 85 

between the ARV and NBV isolates; and, (3) the classical notion that viruses in each 86 

orthoreovirus species correspond to a specific or related host type. The two remaining 87 

species of the genus are baboon orthoreovirus and reptilian reoviruses (Chappell et al., 88 

2005).  89 

Here we report the isolation and characterization of an orthoreovirus recovered 90 

from the aborted fetus and associated placenta of a Steller sea lion at Norris Rock near 91 

Denman Island, British Columbia. Surprisingly, characterization of the full genome of this 92 

virus identified it as a member of a clade that includes ARV and NBV. 93 

94 
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RESULTS 95 

Pathologic studies 96 

The fetus was a mid-gestation male, in good body and post mortem condition 97 

(code 2) with a total length of 50 cm, axillary girth of 29 cm with a mid-sternal blubber 98 

thickness of 0.4 cm.  A moderate amount of meconium was interspersed within the 99 

chorioallantoic villi of the placenta and, microscopically, there was a necrosuppurative 100 

placentitis.  There was extensive hemorrhage with variable edema throughout the fetal 101 

mediastinum, lung, hypodermis, heart, and nasal turbinates with mild, nonsuppurative 102 

inflammation of the heart, adrenal gland, and lungs.  The hemorrhage was attributed to 103 

agonal or terminal trauma, presumably during or shortly after parturition.  Moderate 104 

hemosiderosis with florid extramedullary hematopoiesis was noted throughout the liver.  105 

There were no apparent lesions within sections of the esophagus, larynx, trachea, 106 

peripheral nerve, rib, peripheral vasculature, large blood vessel, urinary bladder, tongue, 107 

umbilicus, salivary gland, urethra, small intestine, colon, bone, bone marrow, trachea, 108 

pancreas, peripheral ganglia, lymph node, thymus, testes, epididymis, kidney, adipose 109 

tissue, brain, spleen or thyroid gland. 110 

Aerobic culture yielded mixed alpha hemolytic streptococci and actinobacilli from 111 

the lung, small intestine, and placenta with scant to light growth of alpha haemolytic 112 

streptococci from the liver, brain, kidney and stomach contents.  No bacteria were 113 

recovered from the spleen or gastric mucosa. Enrichment cultures of the small intestine 114 

did not yield Salmonellae or Brucellae. Based on the nature of the microbial isolates, 115 

lack of attendant inflammatory infiltrate, and multiple percutaneous lacerations, the 116 

bacteria that were found were not considered pathologically significant.  PCR analysis of 117 

pooled lung, spleen, lymph node, and brain did not detect influenza virus, Toxoplasma 118 

gondii, Brucellae, phocid distemper virus, or canine distemper virus. Leptospirae 119 
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sequences were detected by PCR in extracts of lung, spleen, lymph node and brain but 120 

not placenta. 121 

 122 

Virus isolation 123 

Syncytial formation and rounding of individual cells were noted in both Vero and 124 

Vero.DogSLAMtag flasks inoculated with clarified tissue homogenates 3-5 days after 125 

inoculation (Figure 1). Infected cell sheets rapidly deteriorated thereafter, with CPE 126 

detected in flasks from both cell lines from all the tissues sampled.  Supernatant fluid 127 

from infected cells was aliquoted and stored at -80˚C for further testing. Typical sized 128 

reovirus particles were observed by EM (Supplementary Figure 1). 129 

 130 

Molecular characterization 131 

PCR amplification of the infected cell extract using the degenerate reovirus 132 

primer pair resulted in a 549 bp product, after editing out the primer sequences. BLASTN 133 

results showed the highest score with an ARV (strain 176, GenBank accession # 134 

EU707936.1: 73% nucleotide identity).  135 

 Pyrosequencing libraries yielded approximately 60,233 reads. In concert these 136 

reads represented approximately 9.2 kilobases (kb) of sequence distributed along the 137 

reovirus genome scaffolds when aligned to the GenBank database 138 

(http://www.ncbi.nlm.nih.gov/Genbank) using the Basic Local Alignment Search Tool 139 

(BLASTN/BLASTX; (Altschul et al., 1990)). The sequences comprised singleton and 140 

assembled contiguous fragments, representing approximately 39% of reoviral sequence. 141 

Gaps between fragments and the termini of gene segments were completed by PCR, 142 

cloning, and sequencing.  The genomic sequence was verified by classical 143 

dideoxynucleotide sequencing using primers designed using the draft sequence.  144 
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Consistent with the genome organization characteristic for members of the genus 145 

Orthoreovirus, the genome of SSRV comprises 10 RNA segments (GenBank Accession 146 

numbers HM222971-HM222980).  147 

Phylogenetic analysis of the polymerase in the context of representative 148 

members of the Reoviridae family (Figure 2) and analysis of all other segments in the 149 

context of representative members of the Aquareovirus and Orthoreovirus genera 150 

(Figure 3, 4, 5 and Supplementary Figures 2, 3, 4 and 5) indicated that SSRV showed 151 

consistent association with other ARV and with NBV. Interestingly, SSRV is most similar 152 

to an orthoreovirus detected in a captive psittacine bird in Germany (eastern rosella, 153 

Platycercus eximius, GenBank accession # EU252582 (S1), EU189200 (S2), EU189201 154 

(S3), and EU189202 (S4)).  155 

 The genomic organizations of orthoreoviruses are disparate. Although 156 

homologues of the λA, λB, λC, μA, μB, μNS, σB and σNS sequences of SSRV are found 157 

in other orthoreoviruses, segments S1 and S2 differ (Supplementary Figure 6 to 11). 158 

Some orthoreoviruses have polycistronic segments in either S1 or S2. Members of the 159 

NBV, most ARV, and SSRV showed identical genomic organization in the S1 segment 160 

with 3 ORFs called σC, p10, and p17. The known exception is Muscovy duck ARV, 161 

which contains only one ORF, σC (25). In contrast, mammalian orthoreovirus presents 162 

two overlapping ORFs in S1 (called σ1 and σ1s); and reptilian orthoreovirus (RRV) and 163 

baboon orthoreovirus (BRV) two in the analog segment 4 (called p14 and σC in RRV; 164 

p16 and p15 for BRV).  165 

Reovirus fusion-associated small transmembrane (FAST) proteins are 166 

nonstructural, single-pass membrane proteins that induce cell-cell fusion and syncytium 167 

formation (Shmulevitz & Duncan, 2000). With exception of the mammalian 168 

orthoreoviruses, all orthoreoviruses have a FAST protein (Clancy & Duncan, 2009). 169 
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There is evidence that FAST proteins are virulence factors (Brown et al., 2009). The 170 

predicted structure of the SSRV p10 ORF is similar to FAST proteins of other reoviruses 171 

(Figure 6).  172 

173 
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DISCUSSION 174 

To our knowledge, this is the first characterization of an orthoreovirus in marine 175 

mammals. SSRV was isolated from all tissues submitted for isolation, indicating a 176 

pancytotropic infection within the developing fetus.  Reovirus-like particles have 177 

previously been seen in pinnipeds by electron microscopy but were not further 178 

characterized (Steiger et al, 1989); a reovirus in the genus Rotavirus has been identified 179 

in Galapagos sea lions (Zalophus wollebaeki) (Coria-Galindo et al., 2009).  180 

Reoviruses have been demonstrated to cause abortion in mice (Hassan & 181 

Cochran, 1969) hamsters (Kilham & Margolis, 1974), rats (Priscott, 1983) and swine 182 

(Kirkbride & McAdaragh, 1978).  Although this precedent suggests plausibility, and we 183 

recovered SSRV from multiple tissues, we have not proven a causal relationship 184 

between SSRV infection and abortion.  Leptospira sp. was detected by PCR in pooled 185 

lung, spleen, lymph node and brain but not in placenta. Although the site of isolation 186 

seems not related with the abortion, L. interrogans has been associated with 187 

reproductive failure in California sea lions (Smith et al., 1974).  Lesions seen in an 188 

aborted California sea lion fetus with L. interrogans included a friable liver, subcapsular 189 

hemorrhage of the liver and both kidneys, and unclotted blood in the peritoneal cavity 190 

(Gilmartin et al., 1976). L. interrogans is not prevalent in Steller sea lions (Burek et al., 191 

2005), although significant diversity exists amongst L. interrogans serotypes (He et al., 192 

2007). Given that our findings only relate to one case, the prevalence of SSRV and role 193 

as a potential cause of fetal loss and abortion in Steller sea lions and more broadly, 194 

marine mammals needs to be further explored.  195 

Virus isolation attempts from animals presenting unusual clinical signs remains a 196 

powerful tool for the discovery of new and possibly emerging viruses of importance to 197 

both human and animal health. Cell culture propagated virus isolates also provide 198 
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abundant genetic material, thereby facilitating the identification and subsequent 199 

phylogenic relationship to other virus family members.   200 

Our findings may impact the view of host/virus relationships of viruses in the 201 

family Reoviridae.  It has previously been suggested that aquareoviruses and 202 

orthoreoviruses and their respective hosts have co-speciated (Attoui et al., 2002), which 203 

implies significant host fidelity.  ARV and NBV have already been shown to form a clade 204 

(Duncan, 1999; Wellehan et al., 2009).  SSRV appears to be an additional member of 205 

this clade, and represents the first complete genome available in this clade.  Partial 206 

genomic information (the 4 small segments) indicates that a reovirus isolated from a 207 

psittacine bird in Germany (de Kloet, 2008) is very closely related to SSRV.   208 

Viruses within the Reoviridae have been found to cause disease in hosts from 209 

diverse taxa, illustrating their ability to replicate in cells of diverse hosts (Attoui et al., 210 

2006; Wellehan et al., 2009). The ability of SSRV to grow efficiently in cells from African 211 

green monkey (Cercopithecus aethiops) origin, albeit in an in vitro setting, also 212 

underscores its potential broad host range.   One recent study scored the viruses 213 

infecting mammals for biological properties that were considered advantageous to host 214 

switching, and found that Reoviridae scored highest (Pulliam, 2008). The finding of 215 

closely related reoviruses in sea lions, bats, and psittacine birds implies host switching 216 

and lack of host fidelity.   217 

According to the ICTV, conclusive species classification requires the direct 218 

demonstration [or lack] of exchange of genetic material via reassortment of genome 219 

segments (Chappell et al., 2005). Reassortment between avian orthoreoviruses has 220 

been demonstrated (Liu et al., 2003), and further experiments are indicated to look for 221 

genetic exchange between SSRV, ARV, and NBV.  However, this criterion for species 222 

delineation may need to be reconsidered; evidence for genetic exchange between two 223 
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distinct reoviral genera, Aquareovirus and Coltivirus, has recently been published (Mohd 224 

Jaafar et al., 2008).   225 

Reassortment and reclassification pose challenges to viral classification; different 226 

regions of viral genomes may not share common lineages.  The advent of high 227 

throughput sequencing technologies has facilitated full genome sequencing.  Where 228 

feasible, complete genome information should be obtained to allow analysis of the 229 

evolution and relationships of all regions, providing greater understanding of virus 230 

ecology and behavior. 231 

232 
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MATERIALS AND METHODS 233 

Tissue sampling 234 

As part of a study on foraging behavior, Steller sea lions were being captured 235 

using a floating trap anchored off Norris Rock, near Denman Island British Columbia 236 

(49°48′N 124°64′W). On January 25, 2005, a dead, freshly aborted mid-gestational male 237 

Steller sea lion fetus with an attached placenta was found on the floor of the capture trap 238 

prior to a capture event.    An adult Steller sea lion assumed to be the mother of the 239 

aborted fetus was subsequently captured and restrained for handling and processing.  240 

Following being trapped the adult female attempted to eat or attack the dead fetus prior 241 

to its removal from the trap at which time the fetal abdomen and head were punctured 242 

and the placenta detached from the fetus.  The aborted fetus and placenta were 243 

removed from the trap and examined.   244 

A full necropsy of the fetus was conducted in the field and portions of placenta 245 

and of each major organ were preserved in 10% neutral buffered formalin for 246 

histopathology examination. Representative samples of placenta, brain, lung, liver, 247 

kidney, spleen, gastric mucosa and small intestine were cultured for aerobic bacteria.  248 

Tissue homogenate of pooled brain, lung, spleen and lymph node were processed for 249 

Toxoplasma gondii, generic Brucella spp., Leptospira sp., phocid distemper virus, and 250 

canine distemper virus by polymerase chain reaction (PCR), and for virus isolation. 251 

Additional samples of lung, spleen and mesenteric lymph node were also available for 252 

virus isolation. 253 

 254 

Cells and virus isolation  255 

Tissues were homogenized in a MiniMix bag system homogenizer (Interscience, 256 

Topac, Hingham, Massachusetts, USA) to give a 10% w/v suspension in Hanks 257 

Balanced Salt Solution (HBSS) containing antibiotics (penicillin 200 International 258 
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Units/ml, streptomycin 200 µg/ml and gentamicin 50 µg/ml). Suspensions were 259 

centrifuged at low speed (2060g or 700 rcf) for 15 min to remove cell debris. Inocula 260 

consisted of 250 µl of each cell free suspension added onto drained, 80% confluent 261 

cultures of African green monkey kidney cells Vero C1008 (American Type Culture 262 

Collection, Manassas, Virginia, USA) and Vero.DogSLAMtag cells (Vero cells stably 263 

expressing canine SLAM; donated by Dr. Yasuke Yanagi, Kyushu University, Fukuoka, 264 

Japan), all grown in 25 cm2 flasks (Corning Inc., Corning, New York, USA). Adsorption 265 

was allowed to continue for one hour at 370C before the medium was removed and 5 ml 266 

of fresh media (Dulbecco’s Modified Eagle’s Medium/Ham’s F-12, DMEM/F-12, 267 

respectively; with antibiotics and 2% Cosmic calf serum (HyClone Inc., Logan, Utah, 268 

USA)) was added to each flask. Flasks were incubated at 370C and observed daily for 269 

signs of cytopathic effects (CPE). Flasks were subcultured at a ratio of 1:2 every week.  270 

 271 

Molecular virus characterization 272 

Using an RNeasy Tissue Kit (Qiagen, Valencia, California), RNA was extracted 273 

from vero cells displaying CPE.  The extracted RNA was analysed using GreeneChip 274 

Vr1.5 (Palacios et al., 2007; Quan et al., 2007). Probe intensities were background 275 

corrected, log2-transformed, Z-score converted, and their corresponding p-values 276 

calculated. Positive hybridization events were selected as those spots with log2-277 

fluorescence values greater than two standard deviations above the mean signal. 278 

Candidate viruses (defined by their TaxID identifier (Genbank, NCBI)) were ranked by 279 

combining the p-values for the positive probes within that TaxID using the QFAST 280 

method of Bailey and Gribskov (Bailey & Gribskov, 1998). 281 

 Microarray analysis using GreeneLAMP yielded no statistically significant viral 282 

signal. Nonetheless, nucleic acid bound to the array was eluted with the intent of 283 

enriching for cryptic hybridized viral sequences. One hundred µL of water at 90ºC were 284 
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added to the array and mixed 10 times. Eluate was recovered and re-amplified by PCR. 285 

The library of DNA obtained was cloned into a plasmid vector (TOPO TA, Invitrogen, 286 

Carlsbad, California). After transformation into Escherichia coli, colonies were screened 287 

by sequencing, revealing the presence of reovirus nucleic acid. This finding was 288 

subsequently confirmed by RT-PCR of tissue culture extracts using consensus primers 289 

for orthoreoviruses and aquareoviruses (Wellehan et al., 2009). The protocol was 290 

modified to use the primer 1607F as a forward primer and 2200R as a reverse primer in 291 

the second round (Landolfi et al., 2010), thus yielding a 549bp product. 292 

 293 

Viral genome sequencing and analysis of Open Reading Frames (ORFs) 294 

RNA extracts from virus supernatant were amplified and prepared for unbiased 295 

high-throughput pyrosequencing. Total RNA extracts were treated with DNase I (DNA-296 

free, Ambion, Austin, Texas) and cDNA generated by using the Superscript II system 297 

(Invitrogen) for reverse transcription primed by random octamers that were linked to an 298 

defined 17-mer primer sequence (Palacios et al., 2007). The resulting cDNA was treated 299 

with ribonuclease H and then randomly amplified by PCR (Palacios et al., 2008). 300 

Products of >70 base pairs (bp) were selected by column purification (MinElute, Qiagen, 301 

Hilden, Germany) and ligated to specific linkers for sequencing using the 454 Genome 302 

Sequencer FLX (454 Life Sciences, Branford, Connecticut, USA) without fragmentation 303 

of the cDNA (Cox-Foster et al., 2007; Margulies et al., 2005; Palacios et al., 2008).  304 

Removal of primer sequences, redundancy filtering, and sequence assembly were 305 

performed with software programs accessible through the analysis applications at the 306 

GreenePortal website.  307 

Sequence gaps between the aligned fragments were filled by specific PCR 308 

amplification with primers designed using the data from pyrosequencing. Terminal 309 

sequences were generated by ligation (Potgieter et al., 2009). Sequence was verified by 310 
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classical dideoxynucleotide sequencing, using primers designed based on the draft 311 

sequence.  312 

 313 

Phylogenetic analysis 314 

The initial sequences were compared to those in GenBank (National Center for 315 

Biotechnology Information, Bethesda, Maryland), EMBL (Cambridge, England), and 316 

Data Bank of Japan (Mishima, Shizuoka, Japan) databases using BLASTN (Altschul et 317 

al., 1990). 318 

A set of sequences of viruses of the family Reoviridae was used to assess the 319 

phylogenetic history of the Steller sea lion reovirus (SSRV). Polymerase amino acid 320 

sequences of reoviruses were aligned using the programs PROMALS3D (Pei et al., 321 

2008) and 3DCoffee (O'Sullivan et al., 2004) with the purpose of obtaining an alignment 322 

that not only considered primary sequence data but also the secondary structure of the 323 

protein. To evaluate the robustness of the approach, the ability to find and align motifs 324 

previously identified as conserved amongst Reoviridae was used as a marker. 325 

Phylogenetic analysis was performed using p-distance as model of aminoacid 326 

substitution as accepted by ICTV for analysis of the Reoviridae family (Attoui et al., 327 

2006; Mertens et al., 2005). MEGA (Kumar et al., 2004) was used to produce 328 

phylogenetic trees, reconstructed through the Neighbor Joining (NJ) method (Saitou & 329 

Nei, 1987). The statistical significance of a particular tree topology was evaluated by 330 

bootstrap re-sampling of the sequences 1000 times. Identical results were obtained by 331 

Bayesian phylogenetic analyses using the BEAST, BEAUti and Tracer analysis software 332 

packages (Drummond & Rambaut, 2007) (data not shown). All other orthoreovirus and 333 

aquareovirus segment sequences were aligned using a similar approach. The 334 

evolutionary distances were computed using the Poisson correction method and are in 335 

the units of number of amino acid substitutions per site. All positions containing 336 
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alignment gaps and missing data were eliminated only in pairwise sequence 337 

comparisons. 338 

 339 

Sequence analysis 340 

Programs of the Geneious package (Biomatters, Auckland, New Zealand) were 341 

used for sequence assembly and analysis; p-distances were calculated using MEGA3. 342 

Topology and targeting predictions were generated by employing SignalP, NetNGlyc, 343 

TMHMM (http://www.cbs.dtu.dk/services), the web-based version of TopPred2 344 

(http://bioweb.pasteur.fr/seqanal/interfaces/toppred.html), and Phobius 345 

(http://phobius.cgb.ki.se/index.html) (Bendtsen et al., 2004; Claros & von Heijne, 1994; 346 

Käll et al., 2004; Krogh et al., 2001). 347 

 348 

349 
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Figure legends 612 

Figure 1  613 

Syncytia formation in SSRV-infected Vero cells. 614 

Figure 2 615 

Phylogenetic analysis of the RNA-dependent RNA-polymerase of Reoviridae. Full 616 

length amino acid sequences were aligned using the ClustalX (Thompson et al., 2002) 617 

implementation on the MEGA software (Tamura et al., 2007) and further refined using T-618 

Coffee (Notredame et al., 2000) to incorporate protein structure data on the alignment. 619 

Phylogenetic analysis was performed using p-distance as model of amino acid 620 

substitution as implemented by ICTV for analysis of the Reoviridae family (Mertens et 621 

al., 2005). MEGA was used to produce phylogenetic trees, reconstructed through the 622 

Neighbor Joining (NJ) method. The statistical significance of a particular tree topology 623 

was evaluated by bootstrap re-sampling of the sequences 1000 times. Gaps in the 624 

alignment were treated as unknown characters. 625 

Figure 3-5. Phylogenetic analysis of the (3) Lambda-1, (4) Mu-1,  and (5) Sigma-A 626 

ORFs of the Aquareovirus and Orthoreovirus.  Neighbor-joining phylogenetic 627 

analyses of nucleotide sequence differences among λ1, μ1, and σA, were conducted 628 

using MEGA 3.0. The black dot indicates SSRV and the white dots indicate the closely 629 

related psittacine virus. 630 

Figure 6. p10 ORF in S1 of SSRV has characteristics similar to FAST proteins. 631 

Hydrophobicity plot of ARV, NBRV, and SSRV obtained using the Kyle-Doolittle 632 

algorithm implemented in the program TopPred (available at http://mobyle.pasteur.fr/cgi-633 

bin/portal.py?form=toppred).  Sequence analysis show that SSRV contains the 634 

components for a FAST protein: hydrophobic region (HP), transmembrane domain (TM), 635 

and basic region (BR). 636 

637 
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Supplementary Figure 1. Electron micrograph of negative stained SSRV. Scale 638 

bar= 100 nm.  639 

Supplementary Figure 2-4. Phylogenetic analysis of the (2) Lambda-2, Lambda-3 640 

(3) Mu-2, Mu-3 and (4) Sigma-B and Sigma-NS ORFs of the Aquareovirus and 641 

Orthoreovirus.  Neighbor-joining phylogenetic analyses of nucleotide sequence 642 

differences were conducted using MEGA 3.0. The red dot indicates SSRV and the white 643 

dots indicate the closely related psittacine virus. 644 

Supplementary Figure 5. Phylogenetic analysis of the Sigma-C, p10, and p17 645 

ORFs of the Avian and Nelson Bay Reovirus. Neighbor-joining phylogenetic analyses 646 

of the nucleotide sequence differences among the σC, p10, and p17 were performed 647 

using MEGA 3.0. The red dot indicates SSRV and the white dots indicate the closely 648 

related psittacine virus. 649 

Supplementary Figure 6 650 

Protein λA:  The 1303 aa λA protein (143.4 kDa, pI=6.70) is the only protein product from 651 

the L1 gene, which functions as the core shell scaffold.  The hydrophilic amino-terminal 652 

region is distinct from all other ARVs and is clearly divergent when compared with the λ1 653 

from MRVs (Xu & Coombs, 2009). Unfortunately, no Nelson Bay virus is available for 654 

comparison. Xu and Coombs identify many conserved regions between MRV and ARV, 655 

all of which are conserved in SSRV (Xu & Coombs, 2009). The hypervariable region of 656 

the N-terminal domain (orange box), its hypervariable region, the six previously identified 657 

helicase domains (green box) (Bisaillon & Lemay, 1999), the potential 5’ RNA 658 

triphosphate domains regions (Bisaillon & Lemay, 1999), the characteristic C2H2 zinc-659 

binding motif and other areas of high conservation (but without assigned biological 660 

function; light blue) (Xu & Coombs, 2009), among ARV, MRV, and AqRV were 661 

recognizable. In all cases, SSRV domains were closely related with the ARVs.  662 

Supplementary Figure 7 663 
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Protein λB: The 1259 aa RNA dependent RNA polymerase λB protein (140 kDa, 664 

pI=8.37) is encoded by the L2 segment. The aa sequence is least conserved in the N-665 

terminal and C-terminal bracelet domains whereas most conserved aa were found within 666 

canonical fingers, palm, and thumb polymerase motifs. The polymerase motifs I, II and 667 

III, the classical G997DD polymerase motif (Bisaillon & Lemay, 1999) (not shown), and 668 

additional residues shown to be important for a variety of polymerase functions (Arg522, 669 

Arg523, Arg525, Ala587, needed to properly position the incoming NTP triphosphate [red 670 

arrow]; Ile527 and Pro529, needed to help position template nucleosides [green arrow]; and 671 

Thr557, Ser558, Gly559, Ser560, and Val562, portion of a loop that maintains priming NTP; 672 

[blue arrow] and Asp589, Ser681, and Gln731 (Kim et al., 2004; Xu & Coombs, 2008))  are 673 

all conserved.  674 

Supplementary Figure 8 675 

Protein λC:  The L3 segment encodes the λC protein (142.7 kDa, pI=5.92), which 676 

extends from the inner core to the outer capsid of the avian reovirion (Martinez-Costas et 677 

al., 1997; Zhang et al., 2005) and is comparable to the λ2 protein of MRV. Although the 678 

ATP/GTP-binding site motif A in ARV (residues 379 to 386) or the equivalent in MRV 679 

(residues 893 to 900) (Hsiao et al., 2002) are not conserved in SSRV (data not shown), 680 

Lys170 and Lys189, [black arrows] which are believed to be important contributors for the 681 

guanylyltransferase activity by acting as the GMP-acceptor the of λC capping enzyme 682 

(Hsiao et al., 2002; Luongo et al., 2000), the S-adenosyl-L-methionine (SAM) binding 683 

pocket [green box], and the K189DAT surrounding the putative GMP-acceptor site (Hsiao 684 

et al., 2002; Luongo et al., 2000) are all recognizable in SSRV. 685 

Supplementary Figure 9 686 

Protein µA: The 737 aa M1-encoded µA protein (83.3 kDa, pI=8.68) is a minor 687 

component of the inner capsid (Martinez-Costas et al., 1997). Computer searches by Su 688 

et al. revealed that the µA possesses a sequence motif LLALDPPF (aa 458–464) 689 
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characteristics for N-6 adenine-specific DNA methylases (Timinskas et al., 1995); 690 

however, such a sequence is only conserved in SSRV in three amino acids, shown in 691 

bold (V459TKLSPDF).  Fifteen cysteines are conserved in all ARVs (Su et al., 2006); 692 

SSRV shows only 13 (purple marks), although 10 are conserved, suggesting similar 693 

topology.   694 

Protein µB: The primary translation product of the ARV M2 is the µB protein (73.5 kDa, 695 

pI=5.09) (Varela & Benavente, 1994).  A large proportion of the µB molecules 696 

synthesized are cleaved to form a myristoylated amino terminal peptide, termed µBN, 697 

and a large carboxy-terminal protein, termed µBC (Benavente & Martinez-Costas, 2007; 698 

Su et al., 2006; Varela et al., 1996).  The cleavage site in SSRV is conserved and 699 

predicted to occur between N42 and P43.  The site of trypsin cleavage between Arg581 and 700 

Gly582, identified in other ARVs is also conserved (Nibert & Fields, 1992; Su et al., 2006). 701 

Similar topology for SSRV µB to the AVR counterparts is suggested by conservation of 702 

all cysteine residues (purple marks).   703 

Protein µC: Encoded by the M3 segment of the ARV, the µC (71.9 kDa, pI=5.43) is a 704 

nonstructural protein that is predicted to be cleaved into a small ~15 kDa N terminal 705 

peptide and larger ~55 kDa carboxy terminal peptide (Benavente & Martinez-Costas, 706 

2007). Although these products have been detected in vitro, the position of the cleavage 707 

and the protease responsible has yet to be identified.  There are two coiled-coil regions 708 

identified in ARVs from positions 451-472 and 540-599 (Touris-Otero et al., 2004). 709 

These two coiled-coil regions are present in SSRV from positions 455-484 and 559-611, 710 

but a third regions is predicted, using the program COILS (Lupas et al., 1991), from 711 

positions 422 to 449.  This third coil is located in a similar position in MRV. 712 

 Supplementary Figure 10 713 

Protein σC: Encoded by the 3’-proximal cistron of the S1 gene, the σC (34.5 kDa, 714 

pI=4.74) is the viral cell attachment protein. Several conserved aromatic amino acids in 715 
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the C-terminal portion were  previously identified (Day et al., 2007); all are conserved in 716 

SSRV (black arrows). 717 

Protein p17: This protein (10.3 kDa, pI=9.10), encoded by the second ORF of the S1 718 

gene, has no sequence homology with any other viral or cellular proteins. The only 719 

functional domain identified in p17 (Costas et al., 2005), a nuclear localization signal 720 

(NLS), is conserved in SSRV (position 119-128). 721 

Supplementary Figure 11 722 

Protein σB: Encoded by the S3 segment, σB (40.8 kDa, pI=6.75) is a major component 723 

of the reovirion outer capsid. The transmembrance predictions graphs show the 724 

probability of a region being inside of the cell (red), outside the cell (blue) or a 725 

transmembrane region (green).The hydrophobic region predicted for duck reovirus 726 

(Zhang et al., 2007) and the conserved zinc finger domain (position 51-77) (Kapczynski 727 

et al., 2002; Le Gall-Recule et al., 1999; Mabrouk & Lemay, 1994; Schiff, 1998) are both 728 

conserved in SSRV. However, the basic stretch from aa 287-293 in DRV is not present 729 

in SSRV.  730 

Protein σNS: The nonstructural protein σNS (40.4 kDa, pI=7.06) is encoded by the avian 731 

reovirus S4 segment.  The 12 aa conserved region at the N terminus of this protein has 732 

been implicated in the ssRNA binding and aa 135-270 is a central region of conserved 733 

secondary structure in addition to highly conserved hydropathy profiles (Duncan, 1999). 734 
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Figure 3
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Figure 5
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