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Abstract

Interspecies transmission of influenza A is an important factor in the evolution and ecology of influenza viruses. Marine
mammals are in contact with a number of influenza reservoirs, including aquatic birds and humans, and this may facilitate
transmission among avian and mammalian hosts. Virus isolation, whole genome sequencing, and hemagluttination
inhibition assay confirmed that exposure to pandemic H1N1 influenza virus occurred among free-ranging Northern
Elephant Seals (Mirounga angustirostris) in 2010. Nasal swabs were collected from 42 adult female seals in April 2010, just
after the animals had returned to the central California coast from their short post-breeding migration in the northeast
Pacific. Swabs from two seals tested positive by RT-PCR for the matrix gene, and virus was isolated from each by inoculation
into embryonic chicken eggs. Whole genome sequencing revealed greater than 99% homology with A/California/04/2009
(H1N1) that emerged in humans from swine in 2009. Analysis of more than 300 serum samples showed that samples
collected early in 2010 (n = 100) were negative and by April animals began to test positive for antibodies against the pH1N1
virus (HI titer of $1:40), supporting the molecular findings. In vitro characterizations studies revealed that viral replication
was indistinguishable from that of reference strains of pH1N1 in canine kidney cells, but replication was inefficient in human
epithelial respiratory cells, indicating these isolates may be elephant seal adapted viruses. Thus findings confirmed that
exposure to pandemic H1N1 that was circulating in people in 2009 occurred among free-ranging Northern Elephant Seals in
2010 off the central California coast. This is the first report of pH1N1 (A/Elephant seal/California/1/2010) in any marine
mammal and provides evidence for cross species transmission of influenza viruses in free-ranging wildlife and movement of
influenza viruses between humans and wildlife.
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Introduction

Transmission of influenza A viruses among species is thought to

be an important factor in the evolution and ecology of these

viruses. To date there has been evidence for interspecies

transmission between birds and marine mammals and seals and

humans [1–3] as avian origin isolates (H4N5, H3N8) have been

detected in harbor seals (Phoca vitulina) dying with pneumonia; and

transmission to humans (H7N7) has been documented following

exposure to infected seals that died with disease. Thus, these data

suggest that seals can both become infected and transmit influenza

viruses to conspecifics and other species.

Influenza A viruses have long been documented in marine

mammals associated with outbreaks, including during the winter

of 1979 to 1980 when H7N7 was isolated in harbor seals dying

with severe viral pneumonia off the New England coast, again in

1982–1983 when H4N5 was isolated, and most recently in 2011

when H3N8 was isolated [1,4–6]. However, continued surveil-

lance since the first outbreak in 1979 has also resulted in isolation
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of H4N6 and H3N3 viruses from tissues from stranded seals when

no increase in deaths was observed [7]. Two influenza A viruses

(H13N2 and H13N9) have also been isolated from tissues from a

sick pilot whale (Globicephala meleana) that died following a mass

stranding event on the New England coast in 1984, however it was

unclear if the influenza viruses played a role in the whale

strandings [8]. Furthermore, serosurveys have documented

widespread exposure globally to multiple HA (H3, 4, 6, 7, 10,

12) and NA (N2, 3, 7, 8) subtypes including in ringed (Phoca

hispida), harp (Phoca groenlandicus), and hooded (Cystophora cristata)

seals, and walrus (Odobenus rosmarus), as well as more recently in

harbor seals off California [9–12]. Given that exposure has been

detected to multiple strains, co-infection in marine mammals may

lead to reassortment and selection of mammalian adapted viruses.

Infrequently, antibodies against influenza virus strains (H3N2) that

circulated worldwide in humans have been detected in seals

[13,14], indicating that exposure to these human-adapted viruses

may be sporadic and infection self-limiting in marine mammals.

Surveillance for influenza A viruses in more than 900 marine

mammals from ten different species off the Pacific coast from

Alaska to California from 2009 to 2011 also included serial sample

collection from free-ranging juvenile and adult female Northern

elephant seals (Mirounga angustirostris) when they came ashore and

congregated for brief periods between biannual foraging migra-

tions. Northern elephant seals dive continuously to forage at great

depths when at sea (typically between 300 to 700 m but as deep as

1700 m) and females spend the vast majority of their lives ranging

throughout the northeast Pacific and Gulf of Alaska, following

preferred routes [15]. The two foraging trips consist of a short

post-breeding migration (February to May) before returning to

land for one month to molt; and a long post-molting migration

while gestating (June to January), before returning to land for one

month to give birth and breed on natal colonies [16]. After birth,

new born pups remain on or close to shore for the first months of

life learning to swim and forage. As a part of the Tagging of Pacific

Predators (TOPP) program [17], adult Northern elephant seals

were tagged each year to track at-sea movements and behavior,

making them ideal for monitoring changes in exposure to and

detection of new infections as during both time points on land as a

subset of seals are handled and serially sampled. Here we describe

the identification, isolation and characterization of pandemic

H1N1 influenza virus in nasal swabs from two free ranging adult

female Northern Elephant Seals. Sequence analysis indicated that

the two isolates corresponded to the pandemic H1N1 isolate that

was circulating in humans in 2009 and serologic analysis

confirmed that exposure occurred in the population off the central

California coast in the spring of 2010. This is the first confirmation

of pH1N1 influenza infection in marine mammals.

Materials and Methods

Ethics Statement
This work was completed under National Marine Fisheries

Service Marine Mammal permits # 786–1463, 87–143 and 932-

1489-00. The animal use protocol for all procedures on free-

ranging elephant seals was reviewed and approved by the

University of California at Santa Cruz Institutional Animal Care

and Use Committee and followed the guidelines established by the

Canadian Council on Animal Care and the ethics committee of

the Society of Marine Mammalogy.

Animal Sampling
Nasal swabs and, when possible, paired serum samples were

collected in 2010 and 2011 from juvenile (2–3 yrs, n = 8) and adult

(5–13 yrs, n = 64) female Northern elephant seals that were

captured at Año Nuevo State Reserve, San Mateo county,

California, USA (37.116N, 2122.331W) prior to leaving on their

annual migration in February-March and upon their return from

sea in April-May, either at Año Nuevo State Reserve or Pt. Piedras

Blancas, San Simeon, CA, USA (35.667N, 2121.278W). Contact

between the seals and humans in both State Reserves was limited.

Animals were captured as a part of ongoing studies and females

were equipped with satellite tags and time-depth recorders

(SPOT4, SPOT5, MK10-AF, and MK9; Wildlife Computers,

Redmond, WA) prior to leaving shore to monitor at sea

movement, diving and foraging behavior [15]. Nasal swabs were

collected using a sterile-tipped applicator and placed into viral

transport media (VTM). Samples were kept on ice prior to storage

at 280uC until laboratory analysis.

Archived serum samples (n = 238) were obtained from January

2010 to May 2011 from Northern elephant seal pups (1–3 months

old) collected upon admission to The Marine Mammal Center, a

rehabilitation center, in Sausalito, CA, USA to further evaluate

the timeline and geographic extent of exposure to influenza.

Elephant seal pups, following birth at natal colonies and their

mothers’ return to sea, stranded at 125 different locations in nine

counties along the central California coast from San Luis Obispo

County in the south to Mendocino County in the north spanning

approximately 600 km of coastline. Stranded pups were rescued

on beaches and admitted for rehabilitation and likely had limited

close contact with humans until admitted to the rehabilitation

center. The Chi-square test of independence was used to assess

differences in prevalence of exposure in adults and pups and

within age classes by year.

Virus Detection and Isolation
VTM from nasal swab samples was screened for the presence of

influenza A matrix (M) gene using two-step realtime RT-PCR

[18]. Briefly, RNA was extracted from each swab sample using the

MagMAX-96 Viral RNA Isolation Kit (Ambion, Austin, Texas).

cDNA was synthesized using the M-MLV reverse transcriptase

enzyme (Invitrogen, Carlsbad, California) and random hexamers

(Invitrogen) and screened by rRT-PCR targeting the matrix gene

[19]. Virus isolation was performed on positive samples by

inoculating 100 ml of VTM into two 9 to 11 day old SPF

embryonated chicken eggs (Charles River, North Franklin,

Connecticut) by standard methods. The eggs were candled daily

to monitor for embryo mortality. Two passages were performed

and allantoic fluid was tested for the presence of the avian

influenza matrix gene after each passage [18].

Sequence Analysis
RNA was extracted from allantoic fluid from egg passage two at

Mount Sinai School of Medicine using the QIAamp Viral RNA

minikit (Qiagen Inc., Valencia, CA) for initial sequencing. The

eight viral fragments were amplified using a set of pH1N1 2009

specific primers (primers available upon request) and PCR

products were sequenced by conventional Sanger sequencing.

Total RNA from VTM and allantoic fluid aliquots from egg

passage one was then also extracted for unbiased high-throughput

pyrosequencing analysis to confirm the presence of and compare

sequences of A (H1N1)pdm09 in positive samples at the Center for

Infection and Immunity at Columbia University. cDNA was

generated using Superscript II RT (Invitrogen, Carlsbad, CA,

USA) and random octamers linked to a defined arbitrary, 17-mer

primer sequence tail (MWG Huntsville, AL, USA). After RNase H

treatment cDNA was amplified by the polymerase chain reaction

(PCR), applying a 9:1 mixture of the defined 17-mer primer

H1N1 Influenza in Northern Elephant Seals
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sequence and the random octamer-linked 17-mer primer se-

quence, respectively. Products of 70 base pairs (bp) were selected

by column purification (MinElute, Qiagen, Hilden, Germany) and

ligated to specific linkers for sequencing on the 454 Genome

Sequencer FLX (454 Life Sciences, Branford, CT, USA) without

DNA fragmentation. Sequences were analyzed using software

applications implemented at the GreenePortal website (http://

tako.cpmc.columbia.edu/Tools/).

For the phylogenetic analysis 250 concatenated coding

sequences from pandemic H1N1 isolates were selected from an

alignment of 1442 sequences obtained from the NCBI influenza

database (kindly provided by Dr. Vijaykhrisna, Singapore). The

sequences represented each three month time period from April

2009 to March 2011 and were chosen randomly within each time

period. Sequences were added manually from the earliest isolate

(A/LaGloria-3/2009) to the two recent elephant seal isolates and

included six pH1N1 sequences isolated from non-human hosts

(five swine, one turkey). The alignment was manually inspected

and corrected using Bioedit (v7.1.7 Ibis Biosciences, Carlsbad, CA,

USA) and Geneious (Geneious Pro v5.3.6 software Biomatters

Ltd., Auckland, New Zealand) software and used to estimate

phylogeny and divergence times by Bayesian Markov chain Monte

Carlo (MCMC), using BEAST v1.6.1. [20], with a HKY+gamma

substitution model and a strict molecular clock, as used previously

to analyze and date the phylogenetic relationships of influenza

viruses, including pH1N1 [21–23]. Fifty million generations,

sampling every 5000 generations, was performed and results were

analyzed using Tracer v1.5.

Virus Characterization in Tissue Culture
To evaluate and compare the replication kinetics of the

elephant seal isolates, growth curves were performed in Madin

Darby Canine kidney (MDCK) and primary Human Tracheo-

bronchial Epithelial (HTBE) cells [24] alongside three

A(H1N1)pdm09 reference strains: A/California/04/2009, A/

Mexico/4108/2009, and A/Netherlands/602/2009. The replica-

tion kinetics experiments were performed twice. MDCK cells were

seeded in triplicate at a dilution of 106 cells/well in 6-well plates, a

day prior to infection. On the day of infection cells were washed

twice with 2 ml of PBS and incubated with virus inoculum at an

MOI of 0.001 PFU/cell in a final volume of 200 ml. After

incubation for 1 hr at 37uC, the virus inoculum was removed and

2 ml of MEM containing 0.3% bovine albumin and 1 mg/ml

TPCK treated trypsin was added to each well. At 12, 24, 36, 48,

60, 72 and 84 hours post infection 200 ml of supernatant was

removed for virus titration and replenished with same amount of

fresh media. HTBE primary cultures were differentiated in an air-

liquid interphase in dual-chamber 12 well plates, as previously

described [20]. Before infection (performed in triplicate), cell

monolayers were washed 10 times with PBS to remove mucus

produced by the cells and virus inoculum was added at a MOI of

0.001 PFU/cell. At the indicated time points 200 ml of PBS was

added to the cells, incubated for 15 minutes and harvested for viral

titration. The viral titers were determined by plaque assay. Growth

curves were examined showing the mean viral titers and standard

deviation of triplicate wells using Graphpad Prism software

(GraphPad Software, Inc. La Jolla, CA, USA).

Hemagglutinin Inhibition (HI) Assay
Serologic testing was performed on serum samples collected

from the free-ranging adult and juvenile seals, and from pups upon

admission to The Marine Mammal Center. The HI assay was

performed as previously described [25,26]. Briefly, elephant seal

sera were inactivated by trypsin-heat-periodate treatment by

mixing half a volume of trypsin 8 mg/ml (Sigma-Aldrich) in 0.1 M

phosphate buffer, pH 8.2, with one volume of sera and the

samples incubated for 30 min at 56uC. The samples were cooled

to room temperature (RT), mixed with three volumes of 0.11 M

metapotassium periodate and incubated at RT for 15 min. The

samples were then mixed with three volumes of 1% glycerol saline

and incubated for 15 min at RT. Finally, the samples were mixed

and incubated with 2.5 volumes of 85% saline to dilute the

samples to a concentration of 1:10. After treatment 25 ml aliquots

of 2-fold serially diluted serum samples were incubated with 25 ml

of virus containing 8 HA units of influenza virus A/Netherlands/

602/2009 H1N1 (NL/602) and a subset of serum samples

(n = 150) were also incubated with influenza virus A/Brisbane/

10/2007 H3N2 (Br/10) and A/Brisbane/59/2007 H1N1 (Br/59).

Incubation was at 4uC for 30 min, followed by incubation with

50 ml of 0.5% turkey (for NL/602 and Br/10) or chicken (for Br/

59) red blood cells (Lampire Biological Laboratories) at 4uC for

45 min. The HI titer was defined as the reciprocal of the highest

serum dilution that inhibited hemagglutination and a titer .40

was used as the cut-off value for determining seropositive samples.

Results

Detection of A(H1N1)pdm09-like Infection in Northern
Elephant Seals

Free-ranging juvenile Northern elephant seals (n = 8) were

sampled upon tag deployment at Año Nuevo State Reserve from

22 to 28 March 2010; and adult females sampled upon return

from sea (n = 33) at Año Nuevo State Reserve and Pt. Piedras

Blancas from 8 April to 31 May 2010, upon tag deployment

(n = 24) from 1 February to 31 March 2011 and again upon return

from sea (n = 29) from 17 April to 13 June 2011 (16 animals were

sampled at two or three time points). In 2010 all free-ranging

animals tested negative for the matrix gene by RT-PCR (n = 17)

until 30 April when the first adult female (M778) tested positive

upon return (within 4 days) to Piedras Blancas (Figure 1). The

second female (WX541) tested positive on 5 May upon her return

(within 3 days) to Año Nuevo (Figure 1). Four seals handled and

sampled between 30 April and 6 May, and another 21 sampled

after 6 May all tested negative for the matrix gene by RT-PCR. All

free-ranging seals tested were negative for antibodies to pandemic

H1N1 until 19 May 2010, after which seropositive animals were

detected at both Año Nuevo and Piedras Blancas (Figure 1).

Positive HI titers ranged from 1:80 to 1:320 and 14% of the seals

tested seropositive (Figure 2). No free-ranging elephant seals tested

positive for the matrix gene by RT-PCR in 2011 but 16 animals

(40%) were seropositive for antibodies to pandemic H1N1. None

of the free-ranging seals tested positive for antibodies to either the

seasonal H1N1 or H3N2 isolates that were circulating in people in

California in 2010.

Archived serum samples tested were collected from Northern

elephant seal pups admitted for rehabilitation from 29 January to

6 October 2010 (n = 167) and 28 January to 16 May 2011 (n = 71).

None of these samples tested positive for antibodies to pandemic

H1N1 until 4 April 2010 and the number of seropositive animals

increased over the following months (Figure 1), with 12 (7%) pups

testing positive. Positive HI titers ranged from 1:80 to 1:1280

(Figure 2). Since samples were collected upon admission to the

rehabilitation center, HI titers reflected exposure to pH1N1 prior

to entry to the rehabilitation center. Interestingly 14 pups (19%)

also tested seropositive in 2011, but positive titers were lower

overall and ranged from 1:80 to 1:160 (Figure 2). The proportion

of adults (14%, 5/36) and pups (7%, 12/154) that tested

seropositive in 2010 was similar (p = 0.19). However, although

H1N1 Influenza in Northern Elephant Seals
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the proportion of both age classes increased in 2011 (P,0.01),

more adults (40%, 20/44) had detectable antibodies compared to

pups (19%, 14/71) (P,0.01).

Northern Elephant Seal Movements at Sea
Both adult seals that tested PCR positive were captured and

instrumented with satellite tags in February 2010 at Año Nuevo

State Reserve. M778 was born in 2002 and WX541 in 2001, both

had also been previously instrumented in 2008. As expected both

seals made similar trips in both years. M778 left Año Nuevo on 11

February went north and travelled off the continental-shelf from

California to southeast Alaska and foraged off the shelf in pelagic

waters (Figure 3). She returned to Piedras Blancas on 24 April

2010. WX541 left Año Nuevo on 8 February and also went north

but travelled to and foraged in the mesopelagic zone in the

northeast Pacific (Figure 3). She returned to Año Nuevo on 6 May

2010. When comparing the movements of these two elephant seals

to data collected from more than 200 female Northern elephant

seals from 2004–2010 (Figure 3), movements of these two were

consistent with the other animals showing they travelled through

and used the entire region of the northeast Pacific, Gulf of Alaska

and along the Aleutian Islands but concentrated their foraging

efforts along a narrow band at the boundary between the sub-

arctic and sub-tropical gyres [15].

Figure 1. Evidence of exposure to pandemic H1N1 followed by seroconversion in Northern elephant seals (Mirounga angustrostris)
off central California in 2010 to 2011. The arrows indicate when infected seals were detected by PCR and virus isolation, the bars represent the
number of free-ranging adult females (grey bars) and pups upon admission to rehabilitation (black bars) that tested positive for antibodies (numbers
above the bars were the number of seals tested each month).
doi:10.1371/journal.pone.0062259.g001

Figure 2. Individual Hemagglutinin Inhibition Assay serologic results over time showing positive titers that ranged from 1:80 to
1:1280, but varied by animal group in 2010 to 2011. The line represents the cut-off value for seropositive samples of titers $40.
doi:10.1371/journal.pone.0062259.g002
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Isolation and Genomic Analysis of H1N1 Influenza from
Northern Elephant Seals

Virus isolates were obtained from nasal swab samples from both

adult female seals that tested RT-PCR positive for the M gene

after inoculation into embryonated chicken eggs. These isolates

were sequenced after the second passage and showed greater than

99% homology for all segments to pandemic influenza A/

California/04/2009 [27] that circulated in people in California

in 2009. In accordance with conventional nomenclature, the virus

isolates were named A/elephant seal/California/1/2010 and A/

elephant seal/California/2/2010 and the sequences submitted to

GenBank and assigned accession numbers (JX865419 to

JX865426 and KC222499 to KC222506). The nucleotide

sequences of both isolates were almost identical to each other, as

Segments 1 (PB2), 2 (PB1), 4 (HA), 5 (NP) and 7 (M) were

identical; and Segments 3 (PA), 6 (NA) and 8 (NS) each had one

nucleotide difference but all were silent changes. A total of 24

amino acid changes were found when comparing translated

sequences to A/California/04/2009; 7 changes in the HA gene,

five changes in the NA gene, four in the NP gene, two changes in

the NS gene, three changes in the PA gene, two changes in the

PB1 gene and one change in the PB2 gene (Table 1).

In order to confirm the presence of pH1N1 in the samples and

to compare sequences, whole genome sequences were also

amplified from RNA extracted from the VTM and passage 1

allantoic fluid samples through unbiased high throughput

sequencing. Results confirmed the presence of pH1N1 in both

samples. The sequences derived from the VTM and passage 1

samples from both isolates were identical to each other and

included the same nucleotide differences between the two isolates

that resulted in silent changes as described above. They were also

mostly identical to the sequences obtained from the pass 2

allantoic fluid samples with three silent nucleotide changes found

in the HA, NP and PB1 genes.

Bayesian analysis to estimate the phylogenetic relationship of

the Elephant Seal isolates with a selection of more than 250

influenza pH1N1 whole genome sequences showed the two NES

viruses clustered together but were closely related to human

pH1N1 isolates, and confirmed they were derived from the

pandemic virus (Figure 4). The time to most recent common

ancestor (TMRCA) was estimated at April 17, 2010 (95%

Bayesian credible interval between April 1 and April 30). The

TMRCA between the NES isolates and the closest human isolate

(A/San Diego/INS202/2009) was estimated at September 22,

2009 (95% Bayesian credible interval Aug/23 to Oct/19).

Northern Elephant Seals H1N1 Isolates Attenuated in
HTBE Cells in vitro

Viral growth kinetics of the two elephant seal isolates performed

in MDCK and HTBE cells and compared to reference pandemic

H1N1 strains showed that growth in MDCK cells was comparable

to the three reference strains over a 48-hour infection period

(Figure 5a). Although all of the isolates produced variable growth

curves and less detectable virus in the HTBE cells, both elephant

seal isolates replicated less efficiently compared to all of the human

reference strains in the human primary cell cultures, as their

replication kinetics was slower and no detectable virus was

produced consistently until 36–48 h post infection (Figure 5b).

Whereas the A(H1N1)pdm09 human reference strains readily

produced viral progeny within the first 24 h post infection

(Figure 5b). The isolate from ES541 replicated slightly faster than

the isolate from ES778 in the first experiment (Figure 5b) while the

opposite occurred in the second experiment (data not shown).

Results indicated the difference was likely due to experimental

variation rather than a real difference between the two isolates, as

all of the virus produced by the isolate from ES541 up to 48 h post

infection occurred in only one of the triplicate wells.

Discussion

This is the first report of pandemic H1N1 detected in any

marine mammal. It is unclear how and when exposure occurred,

but it is possible that exposure to the virus may have occurred

when the animals were at sea. Given that samples from all other

species tested negative for influenza A, results indicated that

widespread exposure did not occur among marine mammals.

Virus was not detected in any adult females until after females

began to return from sea in April 2010 nor did any adult females

or pups test positive for antibodies until April 2010 after females

collectively began returning to land (more than 100 pups tested

negative from February to April prior to the first seropositive

animal). The RT-PCR positive adult female seals were detected

within days of each other (April 30 and May 5) at two different

locations along the California coast separated by more than 200

miles, and both females were sampled within three or four days of

returning to shore. Exposure on land would have required two

separate exposure events at distant locations along the coast, which

seems unlikely. Both the occurrence of infection at multiple sites

along the coast and the short timeframe following return to shore

and detection of virus supports exposure in these seals prior to

reaching land, either while at sea or upon entering the near-shore

environment, rather than upon returning to shore in April 2010,

however the latter can’t be ruled out. Additionally, as the females

concentrate along a narrow band to forage while at sea, the

potential for a common exposure during their time at sea is

possible. If the virus was circulating in the near-shore environment

in the beginning of April then introduction may have occurred in

one or more females upon returning from sea, prior to arrival on

Figure 3. Tracking data from two adult female Northern
elephant seals (Mirounga angustrostris) that tested positive for
A(H1N1)pdm09 infection (WX541 in green, M778 in orange),
showing both their tracks in 2008 and 2010 leaving from the
Año Nuevo, CA, USA colony and returning to either Año Nuevo
or Piedras Blancas colonies. Tracks from other adult female
Northern elephant seals movement tagged between 2004 and 2010
shown in grey for comparison. Light blue areas represent the waters on
the continental shelf and the dark blue represents deep pelagic waters.
doi:10.1371/journal.pone.0062259.g003
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land. As adult females were already collectively returning from sea

at the beginning of April and not all females were sampled for

testing this seems possible, allowing for further spread following

contact with other seals once on land. Alternatively it is possible

that the virus was circulating in the near-shore or on-shore

environment prior to the adult females returning to shore. This

hypothesis may be supported by the detection of seropositive pups

at The Marine Mammal Center prior to the first virus-positive

adult female, thus viral transmission may have been occurring on

land as early as the beginning of April 2010.

When at sea, elephant seals spend most of their time foraging

concentrated in the northeast Pacific Ocean off the continental

shelf in the mesopelagic zone, a highly productive region where

many marine species and fisheries converge [28,29]. Direct

contact between humans and elephant seals seems unlikely in this

remote region, however since A(H1N1)pdm09 has been detected

in stool samples of hospitalized patients [30], it may be possible

that exposure could have occurred through feces discharged from

the large number of shipping vessels at sea traversing this area.

Alternatively, exposure may have occurred through contact with

other marine species, such as aquatic birds, that have been thought

to be reservoirs for other influenza viruses [31,32].

Phylogenetic analysis of the whole genome sequence showed the

elephant seal isolates clustered together but were closely related to

human pH1N1 isolates. The time to most recent common

ancestor (TMRCA) was estimated at April 17, 2010, very close

to the isolation date in this study. The TMRCA between the NES

isolates and the closest human isolate (A/San Diego/INS202/

2009) was estimated at September 22, 2009, suggesting that the

introduction of the pandemic H1N1 influenza virus into the

Northern elephant seal population occurred between the fall of

2009 and the spring of 2010.

As evaluation of the elephant seal isolates in cell culture showed

that viral replication and pathogenesis was indistinguishable from

that induced by the reference strains in the MDCK cells, but was

inefficient in the human epithelial respiratory cells, results

suggested these may be animal adapted viruses, as has been

indicated previously in harbor seals with H7N7 infection [33].

Given the increased prevalence of pH1N1 specific antibodies

measured over a short period of time, it is tempting to speculate

that the virus was introduced into one or a small number of

elephant seals and quickly acquired adaptive mutations that

allowed for replication and transmission in the elephant seal

population while reducing replication fitness in human epithelial

respiratory cells. Efforts to identify the mutations and biological

mechanisms involved in this adaptation are currently ongoing.

Of the 24 amino acid changes found when comparing

translated sequences to reference strain A/California/04/2009,

only three had not been documented previously [34–38]: E398D

in the NA gene, A260T in the NP gene and N359I in the PA gene.

The significance of these changes is currently unknown. Of the 21

other changes found when compared to A/California/04/2009,

only one mutation (I365V in the NP gene) has not been found in

other pH1N1 isolated from humans, and therefore most mutations

cannot be considered to be elephant seal specific. The greatest

number of changes was in the surface proteins, all seven changes in

Table 1. Amino acid substitutions in the elephant seal pH1N1 strains (A/elephant seal/California/1/2010) isolated in California,
USA, in 2010 compared with A/California/04/2009.

Virus GenBank # PB2 (Seg 1) GenBank # PB1 (Seg 2)

A/California/04/2009 FJ966079 E (120) FJ966080 A (643) K (736)

M778 D T G

WX541 D T G

Virus GenBank # PA (Seg 3)

A/California/04/2009 FJ966081 V (14) P (224) N (359)

M778 I S I

WX541 I S I

Virus GenBank # HA (Seg 4)

A/California/04/2009 FJ966082 P (100) S (145) T (214) S (220) D (239) I (338) E (391)

M778 S P A T N V K

WX541 S P A T N V K

Virus GenBank # NP (Seg 5)

A/California/04/2009 FJ966083 V (100) D (101) A (260) I (365)

M778 I N T V

WX541 I N T V

Virus GenBank # NA (Seg 6)

A/California/04/2009 FJ966084 V (81) V (106) N (248) N (386) E (398)

M778 I I D S D

WX541 I I D S D

Virus GenBank # NS (Seg 8)

A/California/04/2009 FJ966086 E (97) I (123)

M778 A V

WX541 A V

doi:10.1371/journal.pone.0062259.t001
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the HA gene and four of the five in the NA gene were common for

late variant strains isolated in the Fall of 2009 [39]. Four amino

acid changes found in other genes were also of interest: the E97A

mutation was present in the NS1 gene which is thought to interfere

with activity of the TRIM25 molecule resulting in disruption of the

IFN-mediated innate immunity potentially, which may correlate

with viral pathogenesis [34], the first documentation of this

mutation occurring naturally in a host as to date it has only been

produced in laboratory strains through reverse genetics; E120D in

the PB2 gene, is not a common mutation, found in both elephant

seal isolates, but has been documented in people by the

Department of Defense Global Influenza Surveillance program

[40]; the mutation found at D101N in the NP gene occurs more

frequently in isolates from animals and can also be replaced with

glutamic acid or glycine instead of asparagine, as occurred in the

elephant seal isolates [41]; finally I365V in the NP gene is not a

common mutation and found in only a few avian and swine-origin

influenzas [42].

Interestingly, although no virus was detected by RT-PCR in any

of the seals tested in 2011, antibodies to pandemic H1N1 were

detected in pups born in 2011. Titers were lower in the pups tested

in 2011 (1:80 to 1:160) compared to in 2010 (1:80 to 1:1280), and

may represent passively transferred maternal antibodies as

commonly occurs in other neonates [43]. Declining maternal

antibodies to other pathogens have been measured in other seal

species, such as to phocine herpesvirus in harbor seals [44,45], but

the pups in those studies were much younger (one to three weeks

of age). Since elephant seal pups would not have immunologic

memory from previous exposure to A(H1N1)pdm09 during 2010,

as the adult seals would have, it seems plausible that maternal

antibodies were detected. Since the timeline of maternal antibody

decline is not currently known for elephant seal pups, and serial

samples were not tested to determine if antibodies were declining

in these pups, additional work is ongoing to further explore this

possibility.

None of the sera analyzed were positive for antibodies against

other influenzas that were circulating in people in California in

2010, including the 2010 seasonal H1N1 and H3N2 isolates.

Given that the proportion of adults and pups that tested

seropositive in 2010 was similar, and that antibodies were detected

in all age classes during the month of April, these features are

consistent with exposure to a new virus in the population at this

time. Additionally, as follow-up (data are not shown here), nasal

swab samples from free-ranging juvenile and adult elephant seals

in 2012 also tested PCR negative, but a similar proportion tested

seropositive in 2012 (35%, 13/37) compared to 2011 (40%). Titers

from these seals were also decreased compared to the previous two

years, perhaps suggestive of an earlier exposure with currently

waning antibody levels. Thus, as expected, these results suggest

that exposure to human influenza A viruses is likely not an annual

occurrence in seals.

Given that none of the seals that were handled on the beach

appeared ill nor were influenza related lesions documented in

elephant seals that died in rehabilitation in 2010, it seems that

influenza infection was asymptomatic and the disease self-limiting.

Importantly, this work highlights that marine mammals may be

infected with zoonotic pathogens and not show clinical signs of

illness, thus being asymptomatic carriers. This work also empha-

sizes the additional biosafety measures that people working with

and around marine mammals should adopt to adequately protect

themselves to prevent exposure to diseases that although may not

cause illness in the seals, could be quite pathogenic in humans, as

well as to prevent transmission of diseases people may carry to the

animals they are handling.
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Figure 5. In vitro replication kinetics of A(H1N1)pdm09-like
viruses isolated from Northern elephant seals showing growth
curves of the two elephant seal pH1N1 isolates in Madin Darby
Canine kidney (MDCK) cells (A) and Human Tracheobronchial
Epithelial (HTBE) cells (B) compared to three reference stains:
A/California/04/2009, A/Mexico/4108/2009, A/Netherlands/
602/2009. Supernantants were collected at the indicated time points
and titrated by standard plaque assay, graphs show the mean titres of
triplicate wells per time point and error bars indicate the standard
deviation. The dotted line represents the limit of detection of 50 PFU/m.
doi:10.1371/journal.pone.0062259.g005
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