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Phylogenetic analyses can give new insights into the evolutionary history of viruses, especially of

viruses with segmented genomes. However, sequence information for many viral families or

genera is still limited and phylogenies based on single or short genome fragments can be

misleading. We report the first genetic analysis of all three genome segments of Wyeomyia group

viruses Wyeomyia, Taiassui, Macaua, Sororoca, Anhembi and Cachoeira Porteira (BeAr328208)

in the genus Orthobunyavirus of the family Bunyaviridae. In addition, Tucunduba and Iaco viruses

were identified as members of the Wyeomyia group. Features of Wyeomyia group members that

distinguish them from other viruses in the Bunyamwera serogroup and from other

orthobunyaviruses, including truncated NSs sequences that may not counteract the host’s

interferon response, were characterized. Our findings also suggest genome reassortment within

the Wyeomyia group, identifying Macaua and Tucunduba viruses as M-segment reassortants that,

in the case of Tucunduba virus, may have altered pathogenicity, stressing the need for whole-

genome sequence information to facilitate characterization of orthobunyaviruses and their

phylogenetic relationships.

INTRODUCTION

Viruses with tripartite, negative-sense, ssRNA genomes are
classified in the family Bunyaviridae (Fauquet et al., 2005;

Schmaljohn & Hooper, 2001). Among the five genera of the
family, the genus Orthobunyavirus is the most complex,
comprising 18 antigenic groups (Bishop et al., 1980; Calisher,
1996) and 48 classified species (Fauquet et al., 2005).
Historically, orthobunyaviruses and many other arthropod-
borne (arbo)viruses were classified into serogroups and
serocomplexes based on cross-reactivity in complement
fixation (CF) assays that reflect differences in nucleocapsid
(N) protein epitopes, and haemagglutination-inhibition (HI)
and neutralization (NT) assays that interrogate surface
glycoprotein (G) determinants (Bishop, 1996; Casals &
Whitman, 1960). However, in orthobunyaviruses, different
genome segments encode these proteins. The smallest (S)

The GenBank/EMBL/DDBJ accession numbers for the L, M and S
segments are JN572080–JN572082 for WYOV strain ‘original’,
JN801033–JN801035 for WYOV strain TRVL8349, JN801036–
JN801038 for WYOV strain Darien, JN572074–JN572076 for TAIAV,
JN572068–JN572070 for MCAV, JN572071–JN572073 for SORV,
JN572062–JN572064 for AMBV, JN968590–JN968591 for CPOV
strain BeAr328208, JN572065–JN572067 for IACOV and JN572077–
JN572079 for TUCV, respectively, and JN801039 for GROV L segment.

Five supplementary tables are available with the online version of this
paper.
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segment encodes N. In addition, the S segment of most
sequenced viruses also encodes a non-structural protein
NSs that is translated from a +1-shifted small ORF within
the 59 portion of the N sequence, whereas viruses in the
Anopheles A, Anopheles B and Tete serogroups were
found to lack the NSs ORF (Mohamed et al., 2009). The
medium-size (M) segment encodes the ORF for the
polyprotein precursor that is cleaved co-translationally
into two surface glycoproteins, Gn and Gc, and a small
non-structural protein NSm. The largest (L) segment
encodes the viral polymerase (POL). This segmented
nature of the genome affords opportunities for reassort-
ment, and examples of natural segment exchange in
orthobunyaviruses that may have given rise to evolution-
ary shifts are increasingly recognized (Briese et al., 2006,
2007; Gerrard et al., 2004; Klimas et al., 1981; Nunes et al.,
2005; Reese et al., 2008; Yanase et al., 2010). A major
impediment to such analyses is the limited sequence
information available. The majority of sequence informa-
tion concerns the S segment, and only recently growing
numbers of partial or complete sequences of M segments
have become available; little information exists concerning
L segments. The advent of unbiased high-throughput
sequencing (UHTS) techniques affords new opportunities
to sequence divergent genomes and obtain information
that can provide better insight into virus evolution and
phylogenetic relationships.

A group of South American viruses related serologically to
the prototype Wyeomyia virus (WYOV) includes Taiassui
(TAIAV), Macaua (MCAV), Sororoca (SORV), Anhembi
(AMBV) and Cachoeira Porteira [CPOV; currently listed by
its strain designation BeAr328208 (BAV)] viruses, which are
all considered strains of the species Wyeomyia virus by the
International Committee on Taxonomy of Viruses (Fauquet
et al., 2005). These viruses were all isolated in South America
and are transmitted by various mosquito species, particu-
larly including sylvan New World sabethine species (Table
1). The vertebrate host range has not been defined. A single
isolation of MCAV from the rodent species Proechimys
guyannensis and another of AMBV from Proechimys iheringi
have been recorded (de Souza Lopes et al., 1975; Travassos
da Rosa et al., 1998), whereas serological data may also
indicate a bird reservoir (Aitken et al., 1968; de Souza Lopes
et al., 1975). Aside from the original description of each
virus, more frequent isolations were reported for WYOV
from Colombia, Brazil, Panama and Trinidad (Aitken et al.,
1968; Srihongse & Johnson, 1965), although the specificity
of the serological identification may not have been definitive
in all cases. Their role in human disease remains uncertain,
but antibodies to AMBV (de Souza Lopes et al., 1975) and
WYOV were reported from healthy people in the areas of
virus isolation (Brazil for AMBV, Trinidad and Panama for
WYOV), and WYOV has been isolated from a febrile patient
(Aitken et al., 1968; Srihongse & Johnson, 1965).

Table 1. Wyeomyia group viruses studied

Virus/strain Source Country Year Reference Human infection

Wyeomyia

Original Wyeomyia melanocephala Colombia 1940 Roca-Garcia (1944)

TRVL8349 Psorophora albipes Trinidad 1955 Aitken et al. (1968)

Darien Human Panama 1963 Srihongse & Johnson

(1965)

Febrile illness

Anhembi

SPAr2984 Phoniomyia pilicauda Brazil 1965 de Souza Lopes et al.

(1975)

Human seropositivity

Macaua

BeAr306329 Sabethes soperi Brazil 1976 International Catalogue

of Arboviruses*

Human seropositivity

Iaco

BeAr314206 Wyeomyia spp. Brazil 1976 International Catalogue

of Arboviruses*

Sororoca

BeAr32149 Sabethini spp. Brazil 1961 International Catalogue

of Arboviruses*

Tucunduba

BeAr278 Wyeomyia spp. Brazil 1955 Febrile illness with

encephalitic symptoms

Taiassui

BeAr671 Sabethini spp. Brazil 1955

Cachoeira Porteira

BeAr328208 Sabethes glaucadaemon Brazil 1977

*http://www.cdc.gov/nczved/divisions/dvbid/arbovirus.html
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Here we report the nearly complete sequence for all three
genome segments of these viruses and present phylogenetic
analyses that show a relationship to Guaroa virus (GROV)
for their S segments, but a closer link to other Bunyamwera
serogroup viruses for their M and L segments, and identify
two viruses as intra-group reassortants. Furthermore, we
characterize distinguishing genetic features and identify
two additional members of the group.

RESULTS AND DISCUSSION

Genomic sequence information for orthobunyaviruses is
sparse. For some groups and species, sequence information
is missing or represents only small portions of one or two of
the genome segments. One such group comprises South
American viruses related serologically to WYOV, the
prototype of the group initially isolated from Wyeomyia
melanocephala mosquitoes trapped in Colombia in 1940
(Roca-Garcia, 1944) (Table 1). In order to discern genome
characteristics of the Wyeomyia group viruses and assess
their phylogenetic relationships to other members of the
genus, we determined the nearly complete sequence of S, M
and L segments of different isolates of WYOV, as well as
TAIAV, MCAV, SORV, AMBV and CPOV (GenBank
accession numbers JN801033–JN801038, JN572062–
JN572064, JN572068–JN572076, JN572080–JN572082 and
JN968590–JN968591, respectively). Employing consensus
primers that were designed during the course of the work,

additional orthobunyaviruses were screened and amplifica-
tion products with high similarity to Wyeomyia group
viruses were recovered for Tucunduba (TUCV) and Iaco
(IACOV) viruses (Table 1), two other South American
viruses currently attributed to the species Bunyamwera virus
of the genus Orthobunyavirus (Fauquet et al., 2005).
Subsequent genomic sequencing identified these two viruses
as additional members of the Wyeomyia virus group
(GenBank accession numbers JN572077–JN572079 and
JN572065–JN572067, respectively).

Wyeomyia virus group S segments contain A-rich runs in
the 39-UTR of the antigenomic RNA that result in S-
segment sizes of .1000 nt (Table 2). These stretches
separate the termination codon of the N ORF from a
conserved TGGG-TGGG-TGGT motif that was described
as part of a universal primer-binding site in California
encephalitis (CE) group viruses (Bowen et al., 1995;
Campbell & Huang, 1996), but is also found in Bunyam-
wera group members (Dunn et al., 1994). Overall nucleotide
conservation was highest with respect to GROV (range
42 %/CPOV to 39 %/WYOV-TRVL) and Kairi virus (KRIV;
43 %/AMBV to 40 %/SORV) (Table S1, available in JGV
Online); at the amino acid level, the identity values ranged
from 72 % (IACOV/WYOV-Darien) to 67 % (MCAV), and
from 72 % (TUCV/TAIAV/WYOV) to 66 % (IACOV/
AMBV), respectively. Motifs characteristic of orthobunya-
virus N were recognized, and deduced amino acid sequences
were aligned with ‘bunyavirus N protein’ (PFAM accession

Table 2. Lengths of Wyeomyia group S, M and L nucleotide and amino acid sequences in comparison to those of Bunyamwera virus
(BUNV) and La Crosse virus (LACV)

Virus Nucleotide sequence (nt)* Amino acid sequence (aa)

S segment M segment L segment N NSs Gn NSm Gc L

CPOV 1046 4680 6922 233 26D 286 144 946 2236

SORV .1033 4649 6923 233 26D 286 143 946 2236

IACOV .1013 4641 7149 233 27D 286 144 946 2236

AMBV 1049 4612 7009 233 26D 286 144 945 2236

MCAV 1050 4583 6881 233 5D 286 144 946 2236

WYOV-Darien 1113 4563 6868 233 32D 286 143 946 2236

WYOV-TRVL 1146 4623 6867 233 32D 286 143 946 2236

TUCV 1082 4545 6869 233 17D 286 143 946 2236

TAIAV 1082 4554 6869 233 17D 286 142 946 2236

WYOV 1082 4554 6869 233 17D 286 142 946 2236

GROVd 954 .4452 6824 233 83 287 142 939 2231

BUNVd 961 4458 6875 233 101 286 146 956 2238

LACVd 984 4527 6980 235 92 281 145 968 2263

*Nucleotide sequence length for Wyeomyia group viruses includes conserved terminal primer sequences used for PCR amplification, except for

SORV and IACOV S segments, where genomic 59-terminal sequence was not obtained. UHTS data and RACE yielded authentic genomic termini

for AMBV (S and M, 39), MCAV (S and M, 39), TUCV (L, 39), and WYOV (S, 59; M, 39/59; L, 59) that matched in all cases the known conserved

terminal orthobunyavirus sequences used for PCR priming.

DTruncated ORF that may not be expressed.

dGenBank accessions used: LACV: S, NC_004110; M, NC_004109; L, NC_004108; BUNV: S, NC_001927; M, NC_001926; L, NC_001925; GROV:

S, X73466; M, AY380581.
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no. PF00952). Commonly conserved motifs were present
around invariant amino acids T91/R94 and G147/PL160, a
motif proposed to participate in N multimerization was
recognizable as F17NPDV/N (Leonard et al., 2005), and
usually conserved individual amino acids were mostly
maintained (Table S2) (Eifan & Elliott, 2009). Interest-
ingly, the amino acid change E128/A, consistently observed
in Wyeomyia group viruses, has been found to be associated
with a small-plaque/high-titre phenotype in BUNV (Eifan
& Elliott, 2009). Other unique motifs characteristic of
Wyeomyia group members included K55RSEES/T, D87E/
DAM/L, and A204L/VA/L/VVV. An NSs ORF comparable to
those of other sequenced orthobunyaviruses was not
present. Indeed, comparison of the 10 S segments shows
appropriately spaced AUG codons in a reading frame
overlapping that of N. In WYOV-TRVL and IACOV, this
includes a tandem AUG initiation codon, a property
described for Bunyamwera group virus NSs ORFs (Dunn
et al., 1994) and later for the CE group viruses (Bowen et al.,
1995; Huang et al., 1996) and several Oropouche virus
strains (Saeed et al., 2000), but not for other Simbu
serogroup members (Akashi et al., 1984, 1997; Saeed et al.,
2001a, b) or group C viruses (Nunes et al., 2005). In
Wyeomyia group viruses, the approximately 100 residues
following the initiation codon show recognizable conser-
vation with respect to NSs amino acid sequences of other
orthobunyaviruses (particularly AMBV to KRIV/GROV and
WYOV-TRVL to KRIV). However, these amino acids are not
present in a continuous ORF. The sequences are interrupted
by multiple termination codons, such that potential NSs
proteins expressed from the initiation codons are much
shorter (5–32 aa) than those described in other orthobu-
nyaviruses (Table 2). The observed sequence conservation
may thus reflect the close relatedness of the overlapping N
ORFs, instead of functional selection.

The organization of the M segments follows common
patterns by encoding a polyprotein that is predicted to be
cleaved into mature proteins Gn, NSm and Gc. Overall
sequence conservation in comparison to other orthobunya-
viruses was recognized (Table S3), with significant matches
to ‘bunyavirus glycoprotein G2’ (PFAM accession no.
PF03563) and ‘bunyavirus glycoprotein G1’ (PFAM acces-
sion no. PF03557). As for S segments, the antigenomic 39-
UTRs were characterized by A-rich regions that resulted in
large M-segment sizes (Table 2). Signal-peptide sequences
preceding predicted mature protein sequences and protease-
cleavage sites identified in other orthobunyaviruses were
recognized, although some variation was evident in the
proposed cytoplasmic cleavage site preceding NSm and the
trypsin-like motif in Gc (Fig. 1a) (Fazakerley et al., 1988).
Whereas the N-terminal (lumenal) portion of NSm appears
more variable among Wyeomyia group viruses than among
other orthobunyaviruses, the C-terminal (cytoplasmic)
portion, which includes conserved dual zinc-finger motifs
presumably involved in viral RNA binding, was highly
conserved (Estrada & De Guzman, 2011). The overall
structures of Gn and Gc appear well-preserved, as cysteine
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residues common to sequenced Bunyamwera and CE group
virus M-segment sequences are conserved. Features similar
to GROV M-segment sequences include conservation of a
single glycosylation site in Gn (N60/61NS/T; the second
possible glycosylation site, N247/248KS, is predicted to have a
cytoplasmic localization). The conservation of glycosylation
sites in Gc was variable; sites equivalent to the first and third
site of GROV were mostly absent, whereas the second
[N616DI/T in GROV (Briese et al., 2004)] and the fourth
(N615/616/617D/ST, except for WYOV-Darien and -TRVL,
and N1153/1154/1155K/RT, respectively; Fig. 1b) predicted sites
were mainly conserved. An additional potential glycosyla-
tion site conserved throughout Wyeomyia group Gc
sequences was N656/657/658K/ST, which is also found in CE
group viruses of the Melao clade except for Keystone virus
(KEYV), and in Bunyamwera group viruses except for
BUNV, Germiston virus (GERV) and Ilesha virus (ILEV).
Additional glycosylation sites were predicted for individual
viruses (Fig. 1b). The N615/616/617D/ST site is located in, and
N-terminally flanked by, putative antigenic domains
(Brockus & Grimstad, 2001). At the C terminus, the site is
followed by a trypsin-like motif that is surrounded by a
highly divergent orthobunyaviral Gc sequence region (Briese
et al., 2007). In Wyeomyia group viruses, this region is
similarly characterized by indels between different viruses,
and might also represent serologically relevant epitopes.
Conservation is observed for the proposed fusion-peptide
domain (Plassmeyer et al., 2007), which displays a G1053/1054/

1055EGC motif, instead of the N/ST/D/EGC motif of
Bunyamwera and CE group viruses.

L-segment sequences were well-conserved, and deduced
amino acid sequences showed significant similarity to
‘bunyavirus RNA-dependent RNA polymerase (RdRp)’
(PFAM accession no. PF04196). Sequence motifs readily
recognized in L segments of Wyeomyia group viruses
included the POL block III motifs pre-A to E (Fig. 1c) and
the proposed active-site domain S1163DD (Jin & Elliott,
1992; Müller et al., 1994; Poch et al., 1989). L segments were
generally of comparable length to those of other orthobu-
nyaviruses (Table 2), with AMBV and IACOV including
longer AT-rich 39-UTRs that, however, differed in com-
position from those seen in S and M segments. Only short
AT-rich patches were present in the 39-UTRs of the other
Wyeomyia group virus L segments. Given the observed
relationships between S and M segments of the Wyeomyia
group viruses and GROV, it was also of interest to compare
their L segments. Hence, we determined the GROV L-
segment sequence (GenBank accession no. JN801039). At
the nucleotide level, Wyeomyia group sequences were
related most closely to GROV (range 62 %/WYOV-TRVL
to 59 %/IACOV), whereas at the amino acid level, higher
similarity existed to Bunyamwera group viruses BUNV
(68 %/IACOV and WYOV-Darien to 66 %/SORV) and
TENV (68 %/IACOV to 66 %/SORV) (Table S4).

Phylogenetic analyses confirmed the inclusion of TUCV
and IACOV in the Wyeomyia group, with each of the
viruses matching with one of the major clades formed

F
ig

.2
.P

hy
lo

g
en

et
ic

re
la

tio
ns

hi
p

s
o

fW
ye

o
m

yi
a

g
ro

up
vi

ru
se

s
am

o
ng

st
th

em
se

lv
es

an
d

to
o

th
er

re
p

re
se

nt
at

iv
e

o
rt

ho
b

un
ya

vi
ru

se
s.

D
ed

uc
ed

am
in

o
ac

id
se

q
ue

nc
es

o
ft

he
S

(N
O

R
F

)
(a

),
M

(G
n,

N
S

m
,G

C
p

o
ly

p
ro

te
in

O
R

F
)

(b
)

an
d

L
(P

O
L

O
R

F
)

(c
)

se
g

m
en

ts
o

fW
ye

o
m

yi
a

g
ro

up
vi

ru
se

s
w

er
e

al
ig

ne
d

w
ith

th
o

se
o

fr
ep

re
se

nt
at

iv
e

o
rt

ho
b

un
ya

vi
ru

se
s,

an
d

p
hy

lo
g

en
et

ic
tr

ee
s

w
er

e
re

co
ns

tr
uc

te
d

w
ith

th
e

m
ax

im
um

-l
ik

el
ih

o
o

d
m

et
ho

d
as

im
p

le
m

en
te

d
in

M
E

G
A
5

,p
er

fo
rm

in
g

1
0

0
0

p
se

ud
o

re
p

lic
at

es
.T

he
re

su
lti

ng
b

o
o

ts
tr

ap
va

lu
es

ar
e

in
d

ic
at

ed
at

th
e

re
sp

ec
tiv

e
no

d
es

.
B

ar
s,

0
.1

su
b

st
itu

tio
ns

p
er

si
te

(a
,

b
);

0
.0

5
su

b
st

itu
tio

ns
p

er
si

te
(c

).
G

en
B

an
k

ac
ce

ss
io

n
nu

m
b

er
s

ar
e

g
iv

en
ne

xt
to

vi
ru

s
ab

b
re

vi
at

io
ns

:
M

A
G

V
,M

ag
ua

ri
vi

ru
s;

M
D

V
,M

ai
n

D
ra

in
vi

ru
s;

N
O

R
V

,N
o

rt
hw

ay
vi

ru
s;

P
O

T
V

,P
o

to
si

vi
ru

s;
C

V
V

,C
ac

he
V

al
le

y
vi

ru
s;

T
E

N
V

,T
en

sa
w

vi
ru

s;
F

S
V

,F
o

rt
S

he
rm

an
vi

ru
s;

B
A

T
V

,B
at

ai
vi

ru
s;

S
H

O
V

,S
ho

kw
e

vi
ru

s;
B

IR
V

,B
ira

o
vi

ru
s;

N
O

LA
V

,N
o

la
vi

ru
s;

IL
E

V
,I

le
sh

a
vi

ru
s;

M
B

O
V

,M
b

o
ke

vi
ru

s;
B

O
Z

O
V

,B
o

zo
vi

ru
s;

B
U

N
V

,B
un

ya
m

w
er

a
vi

ru
s;

N
R

IV
,N

g
ar

iv
iru

s;
M

P
O

V
,
M

’P
o

ko
vi

ru
s;

G
E

R
V

,
G

er
m

is
to

n
vi

ru
s;

K
R

IV
,K

ai
ri

vi
ru

s;
G

R
O

V
,
G

ua
ro

a
vi

ru
s;

B
W

A
V

,
B

w
am

b
a

vi
ru

s;
P

G
A

V
,
P

o
ng

o
la

vi
ru

s;
T

V
T

V
,
T

riv
itt

at
us

vi
ru

s;
C

H
T

V
,
C

ha
ta

ng
a

vi
ru

s;
S

S
H

V
,s

no
w

sh
o

e
ha

re
vi

ru
s;

LA
C

V
,L

a
C

ro
ss

e
vi

ru
s;

T
A

H
V

,T
ah

yn
a

vi
ru

s;
C

E
V

,C
al

ifo
rn

ia
en

ce
p

ha
lit

is
vi

ru
s;

S
A

V
,S

an
A

ng
el

o
vi

ru
s;

M
E

LV
,M

el
ao

vi
ru

s;
S

O
U

R
V

,S
o

ut
h

R
iv

er
vi

ru
s;

JC
V

,J
am

es
to

w
n

C
an

yo
n

vi
ru

s;
JS

V
,J

er
ry

S
lo

ug
h

vi
ru

s;
C

A
R

V
,C

ar
ap

ar
u

vi
ru

s;
V

IN
V

,V
in

ce
s

vi
ru

s;
O

R
IV

,O
rib

o
ca

vi
ru

s;
M

T
B

V
,M

ar
itu

b
a

vi
ru

s;
M

A
D

V
,M

ad
rid

vi
ru

s;
LE

A
V

,
Le

an
ye

r
vi

ru
s;

O
R

O
V

,
O

ro
p

o
uc

he
vi

ru
s;

A
K

A
V

,
A

ka
b

an
e

vi
ru

s.
G

en
B

an
k

ac
ce

ss
io

n
A

J6
9

7
9

6
0

is
re

p
o

rt
ed

as
re

p
re

se
nt

in
g

m
em

b
er

s
o

f
an

un
ch

ar
ac

te
riz

ed
o

rt
ho

b
un

ya
vi

ru
s

g
ro

up
fr

o
m

P
er

u
(M

o
re

s
e
t
al

.,
2

0
0

9
),

p
o

ss
ib

ly
re

la
te

d
to

T
U

C
V

w
he

n
co

m
p

ar
in

g
th

e
re

p
o

rt
ed

p
ar

tia
lG

n
se

q
ue

nc
e

to
th

e
se

q
ue

nc
es

p
re

se
nt

ed
in

th
is

p
ap

er
.

Genetic characterization of the Wyeomyia virus group

http://vir.sgmjournals.org 1029



within the group: TUCV being related to WYOV and
TAIAV in clade I, and IACOV being related to AMBV,
CPOV and SORV, forming clade II (Fig. 2). Limited
serological cross-reactivity between IACOV and some
Wyeomyia group viruses (AMBV, CPOV, SORV)
was detected previously (International Catalogue of
Arboviruses; http://www.cdc.gov/nczved/divisions/dvbid/
arbovirus.html; Calisher & Karabatsos, 1988), which
resulted in the inclusion of all these viruses in the
Bunyamwera serogroup, but exclusion of IACOV from
the species Wyeomyia virus. At the translated amino acid
sequence level, the IACOV and AMBV S segments (N-
ORF) show a similarly close relationship to each other as is
seen between SORV and CPOV across all genome-segment
sequences. However, for the M and L segments, the AMBV
sequence appears ancestral to IACOV and the other clade II
viruses. TUCV, TAIAV and WYOV are not distinguished
from each other in CF tests (Table 3), but are differentiated
in NT tests (A. Travassos da Rosa, unpublished data), a
result that is in line with the observed closer sequence
relationship between their S segments (Fig. 2a) than
between their M segments (Fig. 2b). This finding, com-
bined with the observed L-segment sequence relationships
(Fig. 2c), is compatible with M-segment reassortment,
suggesting a possible TAIAV/WYOV-Darien/TAIAV geno-
type for TUCV. The high sequence identity between
TAIAV and WYOV strain ‘original’ throughout all genome
segments, including the UTRs, is remarkable (Fig. 2; Tables
S1, S3 and S4). The relationships found for WYOV strain
‘original’ were consistent when compared with GenBank
accessions EU004150 [partial WYOV S-segment sequence
(Mores et al., 2009)], AY593741 and AY593740 [partial M-
segment sequences for WYOV and TAIAV, respectively
(Gerrard et al., 2004)]. In contrast, analyses of strains
TRVL8349 and Darien, which were characterized as isolates
of WYOV by CF (Aitken et al., 1968) or CF and NT
(Srihongse & Johnson, 1965) tests, respectively, indicated a
closer match of their S segments with the WYOV sequence
in GenBank accession FJ235921 (Lambert & Lanciotti,
2009), which differs from GenBank accession EU004150.
MCAV represents the most ancestral clade I S- and L-
segment sequences and is probably another reassortant
virus, as its M segment matches those of TAIAV/WYOV
more closely (Fig. 2). Although a distant relationship
between Wyeomyia group members and Birao virus may
be deduced from analyses of short M-segment sequences
(Gerrard et al., 2004), a similar relationship was not
supported when we analysed the full M-segment sequence
of Birao virus (data not shown).

The Wyeomyia group viruses share a common ancestor
with GROV for their S-segment sequences. However, for
their M- and L-segment sequences, the last common
ancestor appears to be with other Bunyamwera serogroup
viruses rather than with GROV. Although the bootstrap
support for this branching is low for the M-sequence tree
(64/77 %), this assignment is supported by nucleotide and
amino acid sequence identity scores that were higher for T
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other Bunyamwera serogroup members than for GROV
(Table S4). Reports on the presence in South America of
Bunyamwera group viruses such as Maguari virus (MAGV),
Cache Valley virus (CVV) and KRIV, and the widespread
distribution of GROV attest to a potential for geographical
overlap and mixed infections (Aguilar et al., 2010; Aitken &
Spence, 1963; Anderson et al., 1960; Calisher et al., 1988;
Causey et al., 1961; Downs et al., 1961; Forshey et al., 2010;
Vasconcelos et al., 1998). Although homologous segment
reassortment between GROV mutants is readily achieved
experimentally (Iroegbu & Pringle, 1981), heterologous
reassortment between contemporary GROV and Bunyam-
wera group viruses BUNV, MAGV and BATV has not been
observed in vitro (Iroegbu & Pringle, 1981). This restriction
may not apply for other Bunyamwera group viruses (e.g.
CVV or KRIV) or ancestors of contemporary viruses. The
divergent genetic distances observed between GROV,
Bunyamwera and Wyeomyia group viruses may potentially
reflect rather ancient events where long evolutionary
histories obscure recognizable sequence conservation.

The finding that TUCV is a potential reassortant between
WYOV-Darien and TAIAV/WYOV is intriguing. The
WYOV-Darien isolate was obtained from a febrile illness
case in Darien Province, Panama (Srihongse & Johnson,
1965). Similarly, TUCV has been linked to human disease
when the virus was isolated from a child with transient
fever, diarrhoea, meningismus and flaccid paraparesis
(Pinheiro et al., 1994; Vasconcelos et al., 1992). Thus, the
reassorted M segment of these viruses may include con-
served markers that potentially relate to human infection
and enhanced pathogenicity.

In this context, the presence of truncated NSs ORFs in the
Wyeomyia group viruses is of note. NSs proteins of
orthobunyaviruses are considered non-essential for basic
virus replication, but counteract the host interferon
response by inhibiting mRNA and protein synthesis in
mammalian cells, and thus act as a virulence factor
(Blakqori et al., 2007; Bridgen et al., 2001; Weber et al.,
2002). The deletion of NSs in a recombinant BUNV
construct resulted in smaller plaque size, lower titre,
impaired inhibition of cellular mRNA and protein
synthesis, and the induction of interferon (Bridgen et al.,
2001). In experimental mouse infections, these deficiencies
lead to slower dissemination of virus and delayed disease
in comparison with wild-type virus. Similarly, the NSs-
lacking Anopheles A, Anopheles B and Tete group viruses
were found to induce interferon (Mohamed et al., 2009).
These viruses are also not known to infect humans, with
the exception of Tacaiuma virus, which is linked to human
disease and was found to suppress interferon production,
albeit through an NSs-independent mechanism. Phyloge-
netically, the NSs-lacking viruses map in a distinct clade
that is very distant from the Wyeomyia group viruses (data
not shown), and a potential insect-only life cycle has been
proposed for these viruses (Mohamed et al., 2009). The
Wyeomyia group viruses may therefore also be considered
of diminished pathogenicity for mammals, as it seems

unlikely that they express NSs proteins that counteract the
interferon system. It has been shown that the action of NSs
includes interaction of its C-terminal portion with
Mediator protein MED8 (Léonard et al., 2006), but that
the N-terminal part is also crucial for interferon suppres-
sion (van Knippenberg et al., 2010). Thus, it does not
appear likely that the short peptides possibly expressed by
Wyeomyia group viruses are active in suppressing the
interferon response. This may explain the comparable
behaviour of WYOV and Anopheles A virus in mouse
infection experiments described during their initial isola-
tion (Aitken et al., 1968). Nevertheless, Wyeomyia group
viruses have also been linked to human disease. However,
although seropositivity appears not to be rare in exposed
populations, only two isolated cases of transient disease
have been reported, i.e. mild febrile illness in an adult and
febrile illness with neurological symptoms in a young child
(Aitken et al., 1968; Srihongse & Johnson, 1965; de Souza
Lopes et al., 1975). Further studies will be required to
determine the pathogenic potential of the Wyeomyia group
viruses.

Conclusions

Our genetic analysis of all three genome segments of
Wyeomyia group viruses identified distinctive 39-UTRs
of this group. However, review of proximal sequence
confirms their grouping with the Bunyamwera serogroup
viruses, although distinguishing them by the absence of
an NSs ORF comparable to most other orthobunyaviruses.
Together, these findings are consistent with a classification
of WYOV, TAIAV, MCAV, SORV, AMBV, CPOV, TUCV
and IACOV as members of the species Wyeomyia virus in
the genus Orthobunyavirus. Phylogenetic reconstruction
suggests intra-group genome-segment reassortment as a
driving force in the evolution of the group that con-
tributed, together with genetic drift, to diversification.

METHODS

Viruses. Virus stocks were obtained from the World Reference

Center for Emerging Viruses and Arboviruses collection at the
University of Texas Medical Branch at Galveston, TX, USA, and the

WHO Collaborating Center for Arbovirus Reference and Research at
the Instituto Evandro Chagas, Ananindeua, Pará, Brazil (Table 1).

Total RNA was extracted from 250 ml virus stock with Tri-Reagent
(MRC), suspended in 35 ml nuclease-free water and stored at 280 uC.

CF assay. Viral antigens were prepared by sucrose/acetone extraction

of newborn mouse brains (Clarke & Casals, 1958) infected with the
respective viruses. Mouse hyperimmune ascites fluids served as

antibody preparations. Four intraperitoneal injections of antigen
mixed with Freund’s complete adjuvant were given at weekly

intervals; thereafter, mice were inoculated with sarcoma cells and

immune ascitic fluid was collected. CF tests were performed in a
microtitre-plate format by incubation at 4 uC overnight in the

presence of 2 U guinea pig complement (Beaty et al., 1989, 1995). On
a scale of 0 (complete haemolysis) to 4+ (no haemolysis), CF titres

were scored as the highest antibody/antigen dilutions that gave a 3+/
4+ fixation of complement; titres ¢1 : 8 were rated positive.
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UHTS and RT-PCR. Genomic sequences were generated by applying

a combination of consensus RT-PCR and UHTS. For UHTS, aliquots
(0.5 mg) of total RNA extracts were treated with DNase I (DNA-free;

Ambion) prior to reverse transcription by SuperScript II (Invitrogen)

with random octamer primers linked to an arbitrary, defined 17-mer

primer sequence. The cDNA was RNase H-treated and randomly

amplified by PCR with AmpliTaq (Applied Biosystems) and a primer

mix, including the octamer-linked 17-mer sequence primer and the

defined 17-mer sequence primer in a 1 : 9 ratio (Quan et al., 2007).

Amplification products .70 bp were purified (MinElute; Qiagen)

and ligated to linkers for sequencing on a GS-FLX Sequencer (454 Life
Sciences) (Margulies et al., 2005). Sequence reads were stripped of

primer sequences and highly repetitive elements, then clustered and

assembled into contiguous fragments (contigs) for comparison by

BLAST search (Altschul et al., 1990) against GenBank at the nucleotide

(BLASTN) and deduced amino acid (BLASTX) levels.

Based on the sequences obtained through UHTS, multiple primer sets

were designed and used to validate the draft genome sequences by

sequencing overlapping PCR products that covered the entire

genome. Terminal sequences were amplified by using the conserved

14–15 terminal bases of each segment for PCR priming. In some

cases, authentic termini were obtained from the UHTS data (AMBV

and WYOV, S-segment genomic 39 terminus) or in other cases by
RACE kits (Invitrogen) (Table 2). With increasing sequence

information, consensus primers (Table S5) were designed and used

to amplify and sequence additional viruses. Gaps between the

amplification products generated by consensus PCR were filled

through additional specific PCR amplifications, and the draft genome

sequences were subsequently resequenced by overlapping PCR

products along the genome. The consensus and the specific PCRs

routinely used 1 ml random hexamer-primed cDNA (SuperScript II;

Invitrogen), primers at 0.2 mM concentration and Platinum Taq
DNA polymerase (Invitrogen). Amplification products were purified

(QIAquick PCR purification kit; Qiagen) and directly dideoxy-

sequenced on both strands (Genewiz).

Bioinformatic analyses. Sequence assembly and analysis were

performed with programs of the Wisconsin GCG Package (version

10.3; Accelrys, Inc.), MEGA 5 (Tamura et al., 2011), Geneious 5.5
(Drummond et al., 2011) and NewblerAssembler 2.4 (454 Life

Sciences). Amino acid sequence identity and similarity were

calculated with the Needleman–Wunsch algorithm, applying an

EBLOSUM62 substitution matrix [gap open/extension penalties of 10/2

for amino acid alignments; EMBOSS (Rice et al., 2000)] and a Perl script

to parse the results for all comparisons. Topology and targeting

predictions were obtained by employing SignalP-NN/SignalP-HMM,

NetNGlyc and TMHMM at the Center for Biological Sequence Analysis

(http://www.cbs.dtu.dk/services), the web-based version of TopPred2
(http://www.sbc.su.se/~erikw/toppred2/) and Phobius (http://www.

ebi.ac.uk/Tools/phobius/) (Claros & von Heijne, 1994; Käll et al.,

2004; Krogh et al., 2001; Nielsen & Krogh, 1998; Nielsen et al., 1997).

Functional and protein family domain predictions were obtained by

comparison with the PFAM database (http://pfam.sanger.ac.uk/).

Multiple sequence alignments were generated using CLUSTAL 2.0.12

(Chenna et al., 2003), and programs implemented in MEGA and

Geneious software were applied for phylogenetic analyses. Trees were
generated with the maximum-likelihood method as implemented in

MEGA5.

NOTE ADDED IN PROOF

Recently, the CDC, Fort Collins, CO, USA (Barbara Johnson and

Brandy Russel) generously provided the WYOV isolate from which
the S segment sequence (GenBank accession no. FJ235921) was

obtained for additional sequence analyses. Phylogenetic analyses of its

M and L segments (GenBank accession nos JQ743065 and JQ743066,
respectively) indicated, in both cases, WYOV Darien as the closest
relative (identities at the nucleotide/amino acid levels of 94/98 % for
S, 97/98 % for M, and 98/99 % for L sequence), resulting in a
branching comparable to that seen for the S segment (Fig. 2).
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