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Abstract

The global trade in wildlife has historically contributed to the emergence and spread of infectious diseases. The United
States is the world’s largest importer of wildlife and wildlife products, yet minimal pathogen surveillance has precluded
assessment of the health risks posed by this practice. This report details the findings of a pilot project to establish
surveillance methodology for zoonotic agents in confiscated wildlife products. Initial findings from samples collected at
several international airports identified parts originating from nonhuman primate (NHP) and rodent species, including
baboon, chimpanzee, mangabey, guenon, green monkey, cane rat and rat. Pathogen screening identified retroviruses
(simian foamy virus) and/or herpesviruses (cytomegalovirus and lymphocryptovirus) in the NHP samples. These results are
the first demonstration that illegal bushmeat importation into the United States could act as a conduit for pathogen spread,
and suggest that implementation of disease surveillance of the wildlife trade will help facilitate prevention of disease
emergence.
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Introduction

No adequate estimate of numbers of wildlife traded throughout

the world exists given the large size and covert nature of the

business. Beyond the threats to conservation, the intermingling of

wildlife, domestic animals and humans during the process of

wildlife extraction, consumption, and trade can serve as a vessel

for pathogen exchange [1]. Nearly 75% of emerging infectious

diseases in humans are of zoonotic origin, the majority of which

originate in wildlife [2,3]. Therefore infectious diseases acquired

from contact with wildlife, such as occurs via the wildlife trade, are

increasingly of concern to global public health.

Trade in live animals and animal products has led to the

emergence of several zoonotic pathogens, of which RNA viruses

are the most common. SARS emerged as a respiratory and

gastrointestinal disease in southwest China and within months had

spread to 29 other countries, eventually leading to 8,098 cases and

774 deaths. Masked palm civets (Paguma larvata) traded in the

markets of Guangdong were found to be infected and a large

proportion of the early cases were restaurant workers who bought

and butchered wildlife from these markets [4].

The United States is one of the world’s largest consumers of

imported wildlife and wildlife products [5]. Between 2000 and

2006, approximately 1.5 billion live wild animals (around

120,000,000 per year) were legally imported into the United

States nearly 90% of which were destined for the pet industry [6],

and an average of over 25 million kilograms of non-live wildlife

enter the United States each year [5]. New York is the most

frequently used port of entry into the United States, and in

combination with Los Angeles and Miami accounts for more than

half of all known wildlife imports. Imports most often refused

entry (i.e., deemed to be illegal) into the United States included

those from China, Philippines, Hong Kong, Thailand, and

Nigeria [5] – countries with endemic pathogens such as highly

pathogenic H5N1 influenza virus, Nipah virus, and simian

retroviruses.

Health risks to the US public, agricultural industry, and native

wildlife posed by the wildlife trade have generally not been

quantified due to minimal surveillance of live animal imports and

the absence of surveillance of wildlife product imports. Despite

this, known examples of disease introductions to the United

States via the wildlife trade have included pathogens of risk to
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wildlife, livestock and public health such as amphibian chytri-

diomycosis, exotic Newcastle’s disease, and monkeypox, respec-

tively. The monkeypox outbreak showed that a single shipment of

infected animals can result in serious impact on public health,

highlighting the challenges faced by agencies attempting to

regulate both legal and illegal wildlife trade. The USDA regulates

certain exotic ruminant species, some birds, some fish, a few

species of tortoise, hedgehogs, tenrecs, and brushtail possums for

specific foreign animal diseases to protect agricultural health. In

general, there is no current remit for USDA to regulate species as

potential threats to wildlife or public health. Species restricted by

Centers for Disease Control and Prevention (CDC) include

certain turtles, NHPs, bats, civets, and African rodents.

Hunting and butchering of bushmeat (for the purpose of this

paper to be defined according to Oxford Dictionary as the meat of

African wild animals) has been increasingly recognized as a source

of disease emergence. Harvest of NHP bushmeat and exposure to

NHPs in captivity have resulted in cross-species transmission of

several retroviruses to humans including simian immunodeficiency

virus (SIV), simian T-lymphotropic virus (STLV), and simian

foamy virus (SFV) [7,8]. While SIV and STLV adapted to humans

and spread to become the global pathogens human immunode-

ficiency virus (HIV) and human T-lymphotropic virus (HTLV),

less is known about the distribution and public health con-

sequences of SFV infection [7]. Much of the bushmeat smuggled

into the United States from Africa by air passes through Europe en

route, although amount and characteristics of bushmeat reaching

US borders is not well described. One study estimated that

273 tons of bushmeat was imported every year into Paris Roissy-

Charles de Gaulle Airport in France on Air France carriers alone

[9].

Under the authority of the Public Health Service Act, the US

Department of Health and Human Service (DHHS), CDC is

responsible for preventing the introduction, transmission, and

spread of communicable diseases, including those from animals or

animal products to humans. CDC recognizes the potential public

health risk posed by illegal trade in wildlife and regulations are in

place that prohibit the importation of bushmeat products derived

from CDC-regulated animals. To better understand and educate

the public about risks to public health from smuggled bushmeat,

beginning in 2008 CDC and inter-agency and non-governmental

partners initiated a cooperative effort to assess those risks. This

effort includes a pilot study to screen for evidence of zoonotic

pathogens in CDC-regulated wild animal products. Here we

report finding sequences of simian retroviruses and herpesviruses

in bushmeat confiscated at five US airports.

Methods

Shipment confiscation and specimen collection
This pilot study was initiated at John F. Kennedy Airport (JFK)

in Queens, NY, where CDC-regulated wildlife products were

seized by US Customs and Border Protection (CBP) between

October 2008 to September 2010. Beginning in April 2010,

additional seizures from another four airports that receive

international flights (Philadelphia, Washington Dulles, George

Bush Intercontinental-Houston, and Atlanta Hartsfield-Jackson

International) were included in the study. Illegally imported

shipments were confiscated opportunistically and thus the pilot

study established only the presence and not the prevalence of

zoonotic agents in the specimens.

Site of origin and destination, flight data, mail shipment or

carrying passenger identification, date of arrival, and date of

sample collection were recorded for each confiscation. Items were

photographed and identified to genus and species if possible.

Biological samples were processed for aliquoting and storage at the

CDC Quarantine Laboratory at JFK Airport, and any remaining

tissues were incinerated according to standard protocols. All items

were sampled while wearing full personal protective equipment

and sterile instruments were used to avoid cross-contamination.

The freshest part of each item was located (muscle appearing red

or raw, joint fluid, bone marrow, etc.) and several samples were

taken from each item, placed in cryotubes, and preserved

immediately in liquid nitrogen.

An additional collection of bushmeat items was seized by US

Fish and Wildlife Service (USFWS) at JFK airport in 2006, and

provided for this study by USFWS and the United States

Geological Survey National Wildlife Health Center (NWHC).

Specimens included those central to a 2006 federal case against a

person caught smuggling bushmeat into New York for resale [10].

These samples had been stored at USFWS forensic laboratories at

220uC from 2006 until 2010, when they were shipped to the

NWHC for processing as part of this study. All specimens were

then stored at 280uC, and thawed at 220uC before processing at

the NWHC. Tissue dissection was performed as described above

with some minor differences; 0.5 cm2 samples were preserved in

1 mL Nuclisens lysis buffer (Biomerieux Inc, cat# 284135) prior to

immediate storage at 280uC.

Sample analysis and preparation
Permission was obtained from the New York Department of

Agriculture and Markets to transfer the frozen specimens from

JFK Airport to CDC National Center for HIV/AIDS, Viral

Hepatitis, STD, and TB Prevention (NCHHSTP), and/or

Columbia University’s Center for Infection and Immunity (CII)

for testing. When an assured gross identification of species could

not be made, samples were genetically identified by phylogenetic

analysis of mtDNA genes, including cytochrome c oxidase subunits

I and II (COX1/2), and/or cytochrome b (CytB) [11–15].

Nucleic acids were extracted from 10–30 mg of tissue using

mechanical disruption (Qiagen tissue lyser II or Next Advance Inc

Bullet Blender), followed by proteinase K treatment until complete

digestion of the tissue was achieved. Purification of subsequent

homogenates was performed using the Qiagen All-Prep DNA and

RNA extraction kit or DNeasy Blood and Tissue kits according to

the manufacturer’s instructions. Nucleic acid quality was deter-

mined using the Agilent BioAnalyser (Agilent RNA nano 6000) or

ß-actin PCR as previously described [16].

Microbial Screening
Samples were screened for multiple pathogens as described in

detail elsewhere, including: leptospira and anthrax [17], herpes-

viruses [18], filoviruses [19], paramyxoviruses [20], coronaviruses

[21], flaviviruses [22], orthopoxviruses [23] and simian retro-

viruses (SIV, STLV, SFV) [24–29]. All PCR-amplified bands

approximately the expected size were confirmed by sequencing.

Sequence Analysis
Raw sequences were analyzed and edited in Geneious Pro

v5.1.7 and MEGA 5.03. Multiple sequence alignments were

constructed using ClustalW and phylogenetic comparisons made

using Neighbor-Joining (NJ) and maximum likelihood (ML)

algorithms. ModelTest was used to select the most appropriate

nucleotide substitution model. Support for branching order was

evaluated using 1,000 nonparametric bootstrap support. Sequence

identity was calculated using uncorrected p-distances in PAUP*

and BLAST.

Zoonotic Viruses in Imported Wildlife Products
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Results

Specimen condition and species composition
From October 2008 to September 2010, 8 postal shipments

confiscated at JFK Airport were included in this study. From June

2010 to September 2010, an additional 20 passenger-carried

packages confiscated at the four other international airports were

sampled for this study. Additional confiscations were made but

were not included in this study due to poor condition of sample

(e.g., severely degraded or chemically treated). In many cases

multiple separate packages were included in a single shipment or

carried by a single passenger. Specimens varied in condition,

including items that were fresh, raw transported in a cooler, lightly

smoked, or well dried (Fig. 1A–D). Most items contained moist

inner tissue. RNA quality was low with a predominance of

degraded, low molecular weight fragments in the samples, while B-

actin sequences were detected in the NHP specimens suggesting

the presence of amplifiable DNA (data not shown). Samples from

approximately 44 animals were included in this study, including 9

NHPs comprising 2 chimpanzees (Pan troglodytes), 2 mangabeys

(Cercocebus spp.), and 5 guenons (Cercopithecus spp.; one of which was

further analyzed and identified as Cercopithecus nictitans, white-nosed

guenon) all confirmed by phylogenetic analysis; and 35 rodents

comprised of 14 cane rats (Thryonomys sp.) confirmed by gross or

phylogenetic analysis, 18 suspected cane rats (based on gross

identification), and 3 rats (unknown species) confirmed by gross

identification.

The USFWS specimens from 2006 included an additional 20

NHP tissues from 16 individual animals including 10 baboons

(Papio sp.) and 6 African green monkeys (AGMs; Chlorocebus sp.) all

confirmed by phylogenetic analysis.

Pathogen detection
Both SFV and herpesviruses were detected in the nonhuman

primate bushmeat samples. All positive NHP samples are

presented in Table 1. All NHP samples were negative for SIV

and STLV sequences. All rodent samples were negative for

leptospira, anthrax, herpesviruses, filoviruses, paramyxoviruses,

coronaviruses, flaviviruses, and orthopoxviruses.

Simian Foamy Virus
SFV polymerase (pol, 465-bp) and long terminal repeat (LTR,

,357-bp) sequences were detected at CDC in tissues from one

chimpanzee (BM013) and one mangabey (BM008). SFV LTR

sequences were also identified in a second mangabey (BM010).

BLAST analysis of the 425-bp pol sequences from BM013 and

BM008 showed maximum nucleotide identity to SFVs from P. t

ellioti and mangabey (Cercocebus atys and Cercocebus agilis), respec-

tively. Phylogenetic analysis of the two pol sequences with those

Figure 1. Nonhuman primate bushmeat specimens confiscated at US airports. Examples of smuggled simian bushmeat (a) skull, (b) hand,
(c) skull and torso, and (d) arm. Ruler units are centimeters.
doi:10.1371/journal.pone.0029505.g001
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available on GenBank confirmed that the chimpanzee SFV was

highly related to SFV from P. t. ellioti whereas the mangabey SFV

clustered tightly with SFV from sooty mangabeys (Cercocebus atys)

(Figure 2). P. t. ellioti are endemic to West-Central Africa in Nigeria

and Cameroon while Cercocebus atys are found in West Africa from

Senegal to Ghana. Phylogenetic analysis was not performed on

LTR sequences since only limited SFV sequences in this region are

available at GenBank. BLAST analysis was similarly limited and

gave the highest nucleotide identity to chimpanzee and mandrill

(M. sphinx) SFV LTR sequences, respectively. The two LTR

sequences from mangabeys (BM008 and BM010) were 94%

identical to each other due to an 8-bp deletion in the LTR of

BM008 and 8 nucleotide substitutions.

In the USFWS samples SFV pol sequences were present in 3/10

baboons, and in 1/6 AGMs. The baboon SFVs shared .97%

nucleotide identity, and had 88–90% nucleotide identity with the

AGM SFV. Phylogenetic analysis of the short (156 bp) pol

sequences shows that the three baboon SFVs clustered together,

yet separately from the AGM SFV - suggesting some genetic

relatedness that reflects host specificity as previously demonstrated

[13] (Figure 3). However, while the short baboon SFV pol

sequences detected in this study clustered together, they did not

cluster with other published sequences from baboons (80.1–84.2%

nucleotide identity). Similarly the AGM sequences did not cluster

with published AGM sequences (85.8–86.5% nucleotide identity).

These results may reflect poor phylogenetic signal from limited

sequence data in this region.

All simian DNA samples from USFWS were also screened for

larger SFV pol sequences (465-bp) as done at the CDC but were

found in only one baboon sample (CII-163). Phylogenetic analysis

of the larger pol sequence inferred a significant relationship to SFV

from Guinea baboons (P. papio) (Figure 3), which correlated with

the origin of the shipment (Guinea). Our inability to detect larger

pol sequences in other SFV-positive baboon and AGM samples

may be due to highly degraded nucleic acids in those specimens

(confiscated in 2006) which limits detection of longer sequences.

Herpesviruses
Two genera of herpesvirus were detected in NHP specimens,

including cytomegaloviruses (CMV; betaherpesvirus) and lympho-

cryptoviruses (LCV; gammaherpesvirus) (Table 1). CMV se-

quences from baboons CII-028 and CII-163 shared .99.5%

nucleotide identity indicating they are likely to be the same virus.

Comparison of this virus with the CMV sequence from white-

nosed guenon BM002 showed these two CMVs are 91% identical.

Overall, nucleotide sequence identity within the CMVs (for

sequences included here) was shown to be 68.4–100% (m= 85.0%).

LCVs were detected in four AGMs, two baboons, and one

mangabey. LCV sequences in AGMs CII-044 and CII-144 were

.99% identical and likely represent the same virus. A comparison

of this virus with the other LCVs detected showed 88.2–95.5%

sequence identity. Sequence identity for the entire LCV group was

calculated to be 81.0–100% (m= 87.5).

Phylogenetic analysis confirmed the presence and phylogenetic

relatedness of CMV and LCV in these NHP specimens (Figure 4).

Mixed infections
Multiple viruses were detected within some samples. Both LCV

and SFV were detected in the bone marrow of AGM CII-051 and

muscle of mangabey BM008 (Table 1). CMV, LCV, and SFV

were detected in baboon CII-163 (Table 1).

GenBank Accession numbers
New SFV, herpesvirus, and mtDNA sequences identified in the

current study have been deposited at GenBank with the following

accession numbers: JF810903–JF810914 and JF828317–

JF828329. Sequences less than 200 bp are available upon request.

Discussion

Our study is the first to establish surveillance for zoonotic

viruses in wild animal products illegally imported into the United

States in an effort to prevent the transmission of infectious agents

Table 1. Species identification and viruses found in smuggled nonhuman primate bushmeat samples1.

Species2 Common name
Sample
number1 Tissue LCV CMV SFV

Origin of
package

Destination of
package

Chlorocebus sabaeus green monkey CII-040 Bone marrow + Guinea Staten Island, NY

Chlorocebus sabaeus green monkey CII-051 Bone marrow + + Guinea Staten Island, NY

Chlorocebus sabaeus green monkey CII-044 Trachea + Guinea Staten Island, NY

Chlorocebus sabaeus green monkey CII-144 Trachea + Guinea Staten Island, NY

Cercopithecus nictitans greater white-nosed monkey BM002 Muscle + Nigeria Dallas, TX

Papio papio baboon CII-013 Bone marrow + Guinea Staten Island, NY

Papio papio baboon CII-028 Spinal nerve + Guinea Staten Island, NY

Muscle +

Papio papio baboon CII-046 Right eye + Guinea Staten Island, NY

Papio papio baboon CII-163 Optic nerve + + Guinea Staten Island, NY

Right eye + +

Trachea + +

Cercocebus atys sooty mangabey BM008 Muscle + + Liberia Philadelphia, PA

Cercocebus atys sooty mangabey BM010 Muscle + Liberia Philadelphia, PA

Pan troglodytes ellioti Nigeria-Cameroon chimpanzee BM013 Muscle + Nigeria Queens, NY

1Only samples testing positive are listed. All other rodent and simian samples were negative for all pathogens tested.
2Species identification inferred with phylogenetic analysis.
doi:10.1371/journal.pone.0029505.t001
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from these shipments. The restricted number of samples included

in this study were tested for a limited range of pathogens only and

thus presence of additional pathogens not included in this study

cannot be ruled out. We identified four SFV strains and two

different herpesviruses (in some cases in the same tissues) in

smuggled NHP bushmeat. Using phylogenetic analysis and gross

examination, we were able to determine that bushmeat from nine

NHP species and at least two rodent species were attempted to be

smuggled into the United States. These results are consistent with

the origin of the shipments from West Africa and included species

of conservation importance (P. papio, Cercocebus atys, and P. t. ellioti

are classified as ‘‘near threatened’’, ‘‘vulnerable’’, and ‘‘endan-

gered’’, respectively by the International Union for Conservation

of Nature), suggesting more education efforts or harsher penalties

are needed regarding the handling, consumption, and illegal

transportation of products from wildlife of conservation concern.

In addition, the finding of mangabey, guenon, and cane rat

bushmeat in our study is consistent with that reported by Chaber et

al who found these and bushmeat from nine other species entering

Paris-Charles de Gaulle Airport [9].

Our finding of SFV DNA in smuggled NHP specimens

comprising of four species (baboon, chimp, mangabey, and

Figure 2. Inferred phylogenetic relationships of SFV pol sequences detected in bushmeat samples. Neighbor-joining (NJ) and maximum-
likelihood (ML) analysis gave identical branching orders. New SFV sequences identified in this study are boxed. Clades of sequences from Mandrillus,
Cercopithicus, Chlorocebus, Macaca, Pongo, Gorilla, and Pan paniscus are collapsed for presentation. Branch lengths are drawn to scale and only
bootstrap values (NJ/ML) greater than 70% are shown.
doi:10.1371/journal.pone.0029505.g002

Zoonotic Viruses in Imported Wildlife Products

PLoS ONE | www.plosone.org 5 January 2012 | Volume 7 | Issue 1 | e29505



AGM) is significant because SFV is a known zoonotic infection of

humans exposed to NHPs. However, the mode of transmission to

humans is poorly understood and while most infected people

reported sustaining a NHP exposure (mostly bites) others did not,

suggesting a less invasive mode of infection is possible [7]. These

viruses are probably not easily spread from human-to-human,

although persistent infection has been documented [7]. Several

SFV-positive people reported donating blood while infected and

because blood banks do not screen for SFV, secondary

transmission via contaminated blood donations may be possible

[7]. Further research into the possibility of secondary transmis-

sion of SFV is required. The finding of SFV DNA in the

bushmeat samples highlights a potential public health risk of

exposure to these tissues along the hunting, transportation, and

consumption continuum with multiple opportunities for primary

transmissions. Unlike most retroviruses whose RNA genome is

packaged in the viral particles, foamy viruses are unusual in that

DNA and/or RNA can be present in the infectious virus

particles. Thus, finding of only DNA does not exclude that SFV

in these tissues is not infectious, especially in the more recently

CDC confiscated items which contained fresher tissue compared

to the USFWS items confiscated in 2006 that were partially

degraded at the time of analysis in 2010. Human infection with

SFV is of further concern because increases in the pathogenicity

of simian retroviruses following cross-species transmission have

been documented (e.g., HIV-1 and HIV-2) [30,31]. However, the

limited number of cases, short follow-up duration, and selection

biases in the enrolling of healthy workers or hunters to identify

cases all limit the identification of potential disease associations

[7].

Although we did not find SIV or STLV in the limited number

of specimens in this study, these viruses have been found in high

prevalences in NHP specimens at bushmeat markets and in

hunted NHPs [8,32,33]. HIV-1 and HIV-2 emerged as a result of

several spillover events of SIV from chimpanzees and mangabeys,

respectively, that were likely hunted for bushmeat in central and

western Africa [30]. Serosurveillance studies have shown thirty-

five different species of African NHPs harbor lentivirus infections,

Figure 3. Inferred phylogenetic relationships of SFV pol (,153 bp) sequences detected in USFWS bushmeat samples. Neighbor-
joining (NJ) and maximum-likelihood (ML) analysis gave identical branching orders. New SFV sequences identified in this study are underlined.
doi:10.1371/journal.pone.0029505.g003
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with a prevalence of SIV in up to 35% of free-ranging

chimpanzees, and 30–60% of free-ranging sooty mangabeys and

green monkeys [30,31,33,34].

To date, four groups of HTLV viruses found in humans are

believed to have originated from corresponding STLV strains in

NHP species (including mangabeys, baboons, and chimpanzees)

via multiple transmission events [35]. HTLV-1, closely related to

STLV-1 group viruses, infects 15 to 20 million people worldwide

and is spread from person to person via bodily fluids [35]. These

viruses are capable of causing leukemia, lymphoma and neurologic

disease in humans [35]. Discoveries of HTLV-3 and HTLV-4,

and a novel STLV-1 strain were recently made in NHP hunters in

Cameroon [7], and 89% of hunted bushmeat in Cameroon has

been shown to be infected with STLV strains [8,32]. Although

imported wildlife products are often not in a freshly-killed state,

many are not smoked or processed in any manner, thus screening

of larger sample collections of smuggled bushmeat may reveal

evidence of these viruses.

Like retroviruses, herpesviruses can cause long-term latent

infections in their host. Most herpesviruses are host-specific, yet

particular strains are capable of causing severe disease in the non-

host, examples of which include agents of malignant catarrhal

fever and Herpes B virus [36,37]. CMVs are in the betaherpes-

virus subfamily. Human CMV is typically asymptomatic in

humans, with the exception of immunocompromised persons.

Similarly, many NHPs are asymptomatic hosts of CMV that do

not typically infect other species, including humans. However,

baboon CMV (bCMV), like that identified in our study, has been

shown to replicate in human tissues in vitro as well as infect and

replicate in humans following a bCMV-positive liver xenotrans-

plant [38].

Lymphocryptoviruses (LCV) are in the gammaherpesvirus

subfamily, and include human LCV, and Epstein-Barr virus

(EBV), the agent of infectious mononucleosis. Nearly 90% of

adults in the United States have antibodies indicating exposure at

some point to EBV. LCVs are typically asymptomatic in their

Figure 4. Inferred phylogenetic relationships of herpesviruses detected in siman bushmeat samples. Neighbor-joining (NJ) and
maximum-likelihood (ML) analysis gave identical branching orders. Sequences identified in bushmeat products are underlined and cluster with sub-
families betaherpesvirus (samples: CII-028, CII-163, BM-002), and gammaherpesvirus (samples: CII-163, CII-013, CII-051, CII-044, CII-144, CII-040, BM-008).
doi:10.1371/journal.pone.0029505.g004
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host, with the exception of immunocompromised individuals who

may develop B-cell tumors. Although much less efficient, baboon

LCV can infect human B cells in immunocompromised persons or

in persons co-infected with EBV and replicate in EBV-immorta-

lized B cells with the theoretical potential for viral recombination

[39]. However, it is unknown if the novel herpesviruses found in

bushmeat specimens in our study can easily infect humans

handling these tissues. Systematic studies examining herpesvirus

transmission risks associated with handling or consumption of

infected animal tissues have not been reported. In addition, virus

isolation was not performed in our study to determine the

infectiousness of the specimens at the time of confiscation.

In summary, our study establishes initial surveillance methodol-

ogy to detect and identify zoonotic pathogens and species of origin

of wildlife products entering the United States. While we were

successful in demonstrating the presence of SFV and herpesviruses

in bushmeat specimens, our pilot study was limited by the range,

number, and variable condition of products available to us and

was not intended to be a comprehensive review of presence or to

measure prevalence of all pathogens imported in wildlife products.

Because our study only included a small number of CDC-

regulated species and excluded products of ungulate, carnivore,

reptile, avian and other origin, as well as any live animal imports,

all of which may carry zoonotic pathogens or diseases that

threaten domestic livestock or native wildlife, in addition to the

fact that virus isolation was not performed in our study to

determine the infectiousness of the specimens at the time of

confiscation, there is a large component of zoonotic disease risk

assessment not included in this study. A further understanding of

pathogen movements through the trade will only be recognized

through broader surveillance efforts and pathogen identification

and discovery techniques in wildlife and wildlife products arriving

at US ports of entry so that appropriate measures can be taken to

further mitigate potential risks.
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