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Abstract

A variety of filtering methods enable the recursive estimation of system state variables and inference of model parameters.
These methods have found application in a range of disciplines and settings, including engineering design and forecasting,
and, over the last two decades, have been applied to infectious disease epidemiology. For any system of interest, the ideal
filter depends on the nonlinearity and complexity of the model to which it is applied, the quality and abundance of
observations being entrained, and the ultimate application (e.g. forecast, parameter estimation, etc.). Here, we compare the
performance of six state-of-the-art filter methods when used to model and forecast influenza activity. Three particle filters—
a basic particle filter (PF) with resampling and regularization, maximum likelihood estimation via iterated filtering (MIF), and
particle Markov chain Monte Carlo (pMCMC)—and three ensemble filters—the ensemble Kalman filter (EnKF), the ensemble
adjustment Kalman filter (EAKF), and the rank histogram filter (RHF)—were used in conjunction with a humidity-forced
susceptible-infectious-recovered-susceptible (SIRS) model and weekly estimates of influenza incidence. The modeling
frameworks, first validated with synthetic influenza epidemic data, were then applied to fit and retrospectively forecast the
historical incidence time series of seven influenza epidemics during 2003–2012, for 115 cities in the United States. Results
suggest that when using the SIRS model the ensemble filters and the basic PF are more capable of faithfully recreating
historical influenza incidence time series, while the MIF and pMCMC do not perform as well for multimodal outbreaks. For
forecast of the week with the highest influenza activity, the accuracies of the six model-filter frameworks are comparable;
the three particle filters perform slightly better predicting peaks 1–5 weeks in the future; the ensemble filters are more
accurate predicting peaks in the past.
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Introduction

Influenza exacts an enormous toll on human health and

economic well-being. Annually, it leads to an average of 610,000

life-years lost, 3.1 million hospitalization days, 31.4 million

outpatient visits, and a total economic cost of $87.1 billion in the

United States [1]. This burden might be reduced should routine

and reliable predictions of influenza outbreaks become available,

provided prediction lead times are sufficient to allow the

distribution of mitigation and intervention resources. Recent work

has shown that influenza outbreaks can be accurately predicted

with mathematical models of influenza transmission dynamics that

have been recursively optimized using real-time observations of

influenza incidence and data assimilation methods [2–5]. These

findings indicate that infectious disease forecasting is achievable;

however, much work remains to be done testing, validating and

improving these prediction systems.

In this work, we build on our initial influenza prediction efforts

[4,6,7] and use a Susceptible-Infectious-Recovered-Susceptible

(SIRS) model to explore how the choice of optimization method

affects estimates of influenza activity and forecast performance.

The SIRS model is comprised of state variables (e.g., number of

susceptible persons, S ), which document the evolution of

conditions within the simulated population, and parameters (e.g.,

infectious period, D), which represent biological properties

inherent to a given influenza strain and host population and

which also can vary from region to region and season to season.

The ability of a dynamic influenza model to make accurate

predictions depends not only on the fidelity with which the model

represents real-world transmission dynamics, but also on the

appropriate specification of model parameters and the accuracy of

model state variable estimation at the start of a forecast, i.e. the

initial conditions. Consequently, it is important for prediction that

model parameters and initial conditions be well specified.

Data assimilation, or filtering, methods can be used, in

conjunction with the SIRS model and observations of influenza

incidence, to estimate the state variable conditions and infer the

model parameters. Data assimilation methods use the observations

to recursively inform and train the model so that current con-

ditions are better depicted and evolving outbreak characteristics

PLOS Computational Biology | www.ploscompbiol.org 1 April 2014 | Volume 10 | Issue 4 | e1003583

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1003583&domain=pdf


(i.e. the trajectory of the epidemic curve) are better matched. The

SIRS model with inferred parameters and updated state variables,

can then be propagated into the future to make a more accurate

and reliable forecast.

A variety of data assimilation methods exist. The effectiveness of

a particular method depends on the structure and dimension of the

model to which it is applied, the quality of observations, and the

form and limitations of that particular data assimilation method.

Consequently, for a given model and application, it can be

beneficial to compare a number of data assimilation methods in

order to determine whether a more effective method exists. Here,

we perform such a comparison by implementing and evaluating

six different data assimilation methods using the same SIRS model

and observations of influenza incidence. The accuracy and

reliability of state variable and parameter estimation, as well as

outbreak prediction, using each of these methods is then assessed.

In the Materials and Methods section we present an overview of

the data, the SIRS model, the general principle of data

assimilation, and each of the specific data assimilation methods

tested in this study. We first validate each method using a model-

synthesized influenza outbreak. We then use each model-filter

framework in conjunction with historical incidence time series

from seven influenza epidemics during 2003–2012 for 115 cities in

the United States. State variable and parameter estimates are

compared and retrospective forecast accuracy is assessed.

Materials and Methods

Data
(1) Observational estimates of influenza incidence. Regional

influenza activity is monitored as influenza like illness (ILI) by the

U.S. Centers for Disease Control and Prevention (CDC) [8]. The

CDC defines ILI is as a fever (temperature of 100uF [37.8uC] or

higher) and cough and/or sore throat without a known cause other

than influenza. The ILI definition is not specific for influenza, because

many other respiratory diseases manifest with similar symptoms. A

more precise diagnosis comes from the World Health Organization

and National Respiratory and Enteric Virus Surveillance System,

which tests for the presence of influenza virus in samples collected

from patients presenting with ILI. Combining the ILI surveillance

data with this viral isolation information gives a more specific

representation of influenza activity [9].

Google Flu Trends (GFT) data [10] provide weekly, real-time

ILI estimates within the U.S. at national, regional, and municipal

resolutions. The GFT ILI estimates are derived from internet

search query activity and a statistical model that has been

retrospectively calibrated to CDC weekly ILI data (see [10] for

details). In the continental U.S., these data are provided at the

municipal scale for up to 115 cities [7]. In our previous studies

[6,7], we multiplied each weekly municipal GFT ILI estimate by

its CDC census division regional influenza viral isolation rate, to

generate a near real-time estimate of municipal influenza infection

per 100,000 patient visits, termed ILI+. Here we use this same

weekly ILI+ metric for modeling, retrospective forecast, and the

comparison of data assimilation methods.

It should be noted that ILI data are collected as numbers of

infected persons per patient-doctor visit. These data not only miss

the infections of persons not seeking clinical assistance but also do

not provide a true estimate of incidence rate, which is more

directly related to the force of infection in both the real world and

model simulations. Further, the ILI observations are themselves

error-laden. While these errors pose an important challenge to

accurate forecast of influenza, data assimilation methods are

equipped to deal with imperfect observations by making explicit

estimates of the size of the error associated with the uncertainties

in influenza data.

(2) Observation error variance. For this study, we assumed

the observed variable, i.e. the model counterpart of ILI+, has a

Gaussian distribution centered at the observation (i.e., the ILI+
observation was assumed to be the mean) [7]. The variance of

each observation, i.e., ILI+ observation error variance (OEV), was

calculated per [4,7]. Specifically, the OEV for week k, (OEVk) was

defined as

OEVk~1|104z

Pk{1

j~k{3

ILIzj
3

 !2

50
ð1Þ

where ILI+j is the ILI+ estimate for week j. Equation 1 indicates

that OEVk is proportional to the average ILI+ estimate during the

preceding 3 weeks. This same Gaussian distribution was adopted

for all 6 filters tested in this study.

SIRS model
The model used for this study is a perfectly-mixed, absolute

humidity-driven SIRS construct [4]. We use this model as its

ability to generate accurate and reliable real-time influenza

forecasts has been demonstrated [7]. The SIRS model equations

are:

dS

dt
~

N{S{I

L
{

b(t)IS

N
{a ð2Þ

dI

dt
~

b(t)IS

N
{

I

D
za ð3Þ

where S is the number of susceptible people in the population, t is

time in years, N is the population size, I is the number of infectious

people, N – S – I is the number of resistant individuals, b(t) is the

transmission rate at time t, L is the average duration of immunity,

Author Summary

Influenza, or the flu, is a significant public health burden in
the U.S. that annually causes between 3,000 and 49,000
deaths. Predictions of influenza, if reliable, would provide
public health officials valuable advanced warning that
could aid efforts to reduce the burden of this disease. For
instance, medical resources, including vaccines and anti-
viral drugs, can be distributed to areas in need well in
advance of peak influenza incidence. Recent applications
of statistical filtering methods to epidemiological models
have shown that accurate and reliable influenza forecast is
possible; however, many filtering methods exist, and the
performance of any filter may be application dependent.
Here we use a single epidemiological modeling framework
to test the performance of six state-of-the-art filters for
modeling and forecasting influenza. Three of the filters are
particle filters, commonly used in scientific, engineering,
and economic disciplines; the other three filters are
ensemble filters, frequently used in geophysical disciplines,
such as numerical weather prediction. We use each of the
six filters to retrospectively model and forecast seasonal
influenza activity during 2003–2012 for 115 cities in the
U.S. We report the performance of the six filters and
discuss potential strategies for improving real-time influ-
enza prediction.

Comparing Filtering Methods for Influenza Modeling

PLOS Computational Biology | www.ploscompbiol.org 2 April 2014 | Volume 10 | Issue 4 | e1003583



D is the mean infectious period, and a is the rate of travel-related

import of influenza virus into the model domain. The basic

reproductive number, which is the average number of secondary

infections arising from a primary case in a fully susceptible

population at time t is related to the transmission rate through the

expression R0(t) = b(t)D.

Absolute humidity (AH) modulates transmission rates within

this model by altering R0(t) through an exponential relationship

similar to how AH has been shown to affect both influenza virus

survival and transmission in laboratory experiments [11]:

R0(t)~exp(a:q(t)zb)zR0 min ð4Þ

where a = 2180, b = log(R0max2R0min), R0max and R0min are the

maximum and minimum daily basic reproductive number,

respectively, and q(t) is the specific humidity, a measure of AH,

at time t (see Text S1 for details). The value of a is estimated from

the laboratory regression of influenza virus survival upon AH [12].

The model was run using a stochastic Markov chain formula-

tion in which individuals are treated as discrete entities, i.e. all state

variables are whole numbers. Transitions between model states

(i.e. susceptible, infectious, recovered) were simulated as a Poisson

process with expected rates determined from Equations 2 and 3.

General setup of the SIRS model-filter frameworks
Bayesian inference methods compute the posterior (i.e., the

conditional distribution given the observations) of a parameter or

state variable based on the prior (i.e., the probability distribution

regardless of the observations) and the likelihood (i.e., the

conditional distribution of the observations given the parameters

or state variables). Here, we define the model ‘state’ as all variables

within the model-filter framework, including both the variables (S

andI ) and the model parameters (L, D, R0max, and R0min.). A Monte

Carlo approach, in which multiple representations of the system

are treated as samples from the prior and posterior distributions,

can be adopted for performing data assimilation. Each system

representation, termed a particle or ensemble member, consists of

a different combination of the model state. The data assimilation

process begins with a suite of unique particles or ensemble

members (e.g. 10,000 or 300 model simulations). The filtering

procedure includes repeated short-term (e.g., 1 week) prediction-

update cycles; the prediction propagates the particles/ensemble

forward according to the SIRS model equations, and the update,

triggered by arrival of a new observation record, assimilates that

observation to refine the estimate of the state. These updates

enable optimization of the model state to characterize the ongoing

observed epidemic.

Specifically, the SIRS model is propagated through time k = 1,

2, …, per Eqs. 2 and 3, and makes a prediction of the new state,

xk. This state is related to the latest observation of ILI+, zk,

through a normally distributed likelihood function:

p zkjxkð Þ~N Hxk,s2
� �

ð5Þ

where H is the mapping from state space to observation space, and

s2 is the observation error variance, as defined in Eq. 1. The filter

is then used to find the posterior, i.e. p(xk|z1:k), given a sequence

of observations, the likelihood, and the model prediction. This

problem is solved by Bayes’ rule:

p(xkDz1:k)~
p(zkDxk):p(xkDz1:k-1)Ð

p(zkDxk):p(xkDz1:k-1)dxk
ð6Þ

This posterior estimate then replaces the prior state prediction, the

model is propagated forward to the next observation and the

process is repeated.

All filter methods use these prediction-update cycles; however,

different filter methods make different assumptions. For instance,

in the application presented here, the parameters of the SIRS

model (L, D, R0max, and R0min) are formulated as constants (i.e. Eqs.

2–4), and these constant parameters are inferred through the

prediction-update cycles of the filter process. However, while the

same SIRS model construct is used, different filter methods handle

parameter estimation differently. Some of the filters revise their

parameter estimates at each data assimilation checkpoint, and the

entire filtering process is done with a single round of integration

through the observed time series. Other filters use multiple rounds

of integration through the observed time series and optimize the

model parameters based on the entire observation record (i.e.,

from the beginning to the end of simulation).

Some of the filters are also built upon specific assumptions that

enable the simple solution of the filtering algorithm. For instance,

two of the ensemble filters we test here assume that the range of

state space conditions depicted by the ensemble conforms to a

Gaussian distribution, which makes these filters sub-optimal for

non-linear systems. Other filters, such as particle filters make no

assumption about the form of the distributions, which, in theory,

makes them more suitable for nonlinear systems. Nevertheless,

both ensemble and particle filters have been successfully used to

describe non-linear systems [2,13–17]. For a weakly nonlinear

system, such as the SIRS model used here, it is difficult to know in

advance whether the linear, Gaussian assumption that confers the

ensemble filters their computational tractability leads to degraded

performance relative to the particle filters.

The particle filters [16,18–20] and ensemble filters [13,14,21],

which we will be exploring here, are data assimilation methods

that have been applied in infectious disease modeling, inference,

and forecasting [2,4,17,22]. The maximum likelihood via iterated

filtering (MIF) [16,22] method, based on particle filtering, has

been applied to study the transmission of cholera [16,23], measles

[24], and influenza [25]. Rasmussen and colleagues [17] applied

the particle Markov chain Monte Carlo (pMCMC) [20], an

algorithm combining particle filtering and MCMC methods, to

simulate influenza prevalence data (generated from an SIR model)

and showed that the pMCMC was able to recreate synthetic time

series with parameter estimates close to those used to generate the

synthetic data. The ensemble adjustment Kalman filter (EAKF)

has been used to forecast observed seasonal influenza outbreaks

and was able to produce accurate retrospective and real-time

predictions of epidemic peak timing [4,7].

Each of the six filters used in this study is described in turn

below. We focus on presenting the principal features of each filter.

For technical details, we refer the readers to the original

publications. Implementation details are available in Text S1;

the code for the six influenza forecast frameworks written in R

(http://www.R-project.org) is available from our website: http://

cpid.iri.columbia.edu/Refs.html.

Particle Filters
(1) Basic particle filter (PF). The basic particle filter (PF)

used in this study is primarily based on Algorithm 3 in [18]. The

PF populates state space with a set of discrete particles and makes

no assumption of the overall distribution of these particles. Per the

core prediction-update cycle, particles are propagated forward in

time using the SIRS model, and each week, ILI+ observations are

used to weight each particle according to its likelihood.

Comparing Filtering Methods for Influenza Modeling
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(2) MIF. In contrast to the basic PF, which performs state and

parameter estimation at each data-assimilation checkpoint during

a single round of integration through the observed time series, the

MIF, proposed by Ionides et al. [16,22], makes state and

parameter estimates based on multiple rounds of particle filtering,

i.e. multiple iterations, through the time series of observations. The

assimilated observed time series record consists of all observations

available; that is, for fitting the epidemic curve, it includes weekly

ILI+ records of an entire season, and for the forecasts, it includes

ILI+ records up to the latest observation before the start of

forecast. Within each round of filtering, i.e., each iteration, a PF is

used, which allows the filter to explore parameter space. The

posterior estimate of parameters achieved when all available

observations have been assimilated is then used to inform the prior

for the next iteration. Specifically, the new prior of parameters

takes on a multinormal distribution with the means of the posterior

from the last iteration and a prescribed narrowed covariance

matrix (see [16,22] and Text S1). This procedure updates the

parameter estimates in the direction of increasing likelihood such

that it finally converges to the maximum.

(3) pMCMC. The pMCMC used in this study is based on the

particle marginal Metropolis-Hastings sampler in [20]. This

algorithm decouples the state variables and model parameters,

applying an MCMC method to constrain the model parameters

while the PF is used between MCMC iterations to estimate the

state given a set of parameters proposed by the MCMC step.

Acceptance of a parameter proposal is based on the joint

likelihood over the entire assimilated observation time series (as

for the MIF), per the Metropolis-Hastings algorithm. The set of

parameters proposed for each MCMC proposal is used through-

out the simulation and for all particles; therefore the parameters

are stationary.

Ensemble filters
The ensemble filter variants described below differ only in how

the observed variable is updated. Two of the ensemble filters we

describe below, the ensemble Kalman filter (EnKF) and the

EAKF, assume that the prior and posterior are Gaussian and that

the function mapping from the state to the observational space is a

linear operator [13,14,26].

(1) EnKF. In the observation space, the EnKF [14] computes

the posterior ensemble as a weighted average of the prior and the

measurement according to the following equation:

xn
k,post~

s2
k,obs

s2
k,obszs2

k,prior

xn
k,priorz

s2
k,prior

s2
k,obszs2

k,prior

~zzn
k ð7Þ

where, for week k, ~zz is the ILI+ measurement plus Gaussian

random noise with variance OEVk, x is the observed variable (i.e.,

the model counterpart of z), s2 is the variance, the superscript n

denotes the nth ensemble member, and the subscripts obs, prior, and

post, denote the observation, prior, and posterior, respectively.

Note s2
k,obs is the same as OEVk in Eq. 1.

The unobserved variables and parameters are adjusted based on

the increment of the observed variable. Specifically, the increment

of the nth ensemble member for the mth unobserved variable or

parameter of the state, Dym,n
k , i.e., the posterior minus the prior, is

calculated as:

Dym,n
k ~

sp,m

s2
k,prior

 !
Dxn

k, m~1, . . . ,M; n~1, . . . ,N ð8Þ

where sp,m is the prior covariance of the observed and the mth

unobserved variable or parameter of the state, Dxn
k is the

increment of the observed variable (i.e. xn
k,post{xn

k,prior), M is the

number of variables of the state, and N is the ensemble size.
(2) EAKF. Unlike the EnKF, the EAKF algorithm, based on

[4,21,27], does not add Gaussian noise to the ILI+ measurement.

To form the posterior ensemble, the EAKF deterministically

adjusts each ensemble member towards the ensemble mean (Eq.

S1) such that the posterior variance is identical to what is predicted

by Bayes’ theorem (assuming Gaussian distributions). The

unobserved variables and parameters are then adjusted per Eq. 8.
(3) RHF. The third ensemble filter, the rank histogram filter

(RHF; [13]), does not restrict the form of the prior, observation, or

posterior, a feature that makes it attractive for use in nonlinear

systems, which do not, in general, follow normal distributions.

However, like the other two ensemble filters, it shares the

assumption that there is a linear relationship between an

observation and all the model state variables. In this aspect, it

does not completely resolve the problem of being suboptimal for

non-linear systems. In the RHF [13], the ensemble members are

used to empirically construct a continuous density distribution of

the prior, which is then multiplied by the likelihood function to

determine the posterior.

Model validation
A mock time series of influenza prevalence (I ) and number of

susceptible persons (S) was generated using the SIRS model for a

population of 100,000 with an initial susceptible rate of 60%. The

parameters used were the same as in [4], i.e., L = 3.86 y,

D = 2.27 d, R0max = 3.79, and R0min = 0.97; historical AH condi-

tions from September 29, 1972 to May 14, 1973 for New York

City were used as the humidity forcing data. We refer to this mock

time series as the synthetic ‘truth’.

Random Gaussian noise (zero mean and a variance of 10000)

was then added to the synthetic truth to mimic error-laden

observations and used as the initial test data for all six filters.

Specifically, the SIRS model was run in conjunction with each of

the six filters using the synthetic time series as observations, and

final state variable and parameter estimates were compared with

the truth. For each filter, a suite of particles or ensemble members

was employed (see Text S1 for details). Initial variable and

parameter values for each particle or ensemble member were

chosen randomly from a distribution of possible values, as in [4].

To assess the effects of initial particle or ensemble member

random selection on the final state estimates, each filter was run 25

times.

Modeling historical ILI+ time series
The six filtering methods were then applied to the SIRS model

and weekly ILI+ for the 2003–04 through 2011–12 seasons for 115

cities in the U.S. [7]. We excluded the 2008–09 and 2009–10

seasons, which spanned the 2009 pandemic, to focus on seasonal

influenza.

All model-filter frameworks were run for a single season at a

time, as opposed to continuously from 2003 to 2012. Briefly, at the

beginning of each season (i.e., Week 40 of each year, before

influenza activity), the system was initialized with randomly

selected values of all model state variables and parameters; the

system was then propagated forward per the SIRS model and

weekly ILI+ observations were assimilated up to the end of each

season (i.e., Week 39 of the next year). Due to the intense

computational demand, especially for the MIF and pMCMC, this

process was repeated 5 times for each combination of filter, city

and season. For instance, five separate MIF runs were performed

Comparing Filtering Methods for Influenza Modeling
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for Chicago during the 2004–05 season. We calculated the

correlation and root mean squared (RMS) error between the

model simulated time series and the corresponding historical ILI+
time series, for each run.

Retrospective forecasting
Retrospective forecasting was performed for the 115 cities

during the seven aforementioned influenza epidemics. Each

forecast framework was run for a training period of 3–28 weeks

beyond Week 40 of each year. The training period assimilates

observations (i.e., 3–28 ILI+ weekly records) to estimate the state

(including I and S, and all model parameters) up to the point of

forecast. The forecast is then generated by integrating the SIRS

model forward with the last state estimate from the training period

up to Week 39 of the next year. Thus, for each combination of

filter, city and influenza season, 26 different weekly forecasts were

generated—a forecast following 3 weeks training, a forecast

following 4 weeks training, etc. This process was repeated 5 times

to assess the effects of initial particle or ensemble member random

selection.

Forecast accuracy was evaluated for prediction of the peak week

of each influenza outbreak, i.e., the week with the highest observed

ILI+. For each run, each particle (for the particle filters) or

ensemble member (for the ensemble filters) generates a prediction;

the collective prediction of the whole run is taken as the value (i.e.,

the week of peak) most frequently predicted. We refer to this

metric as mode predicted peak. Mode predicted peaks occurring

within 61 wk of the observed ILI+ peak were deemed accurate.

Results

Synthetic runs
Figure 1 shows the time series of state variables (i.e., susceptible

and infectious levels, S and I ) and four model parameters inferred

from each filter. All filters produced time series of I and S that are

highly correlated to the ‘truth’ (r.0.99 for I, and r.0.94 for S,

averaged over 25 runs of each filter).

For the estimates of model parameters (e.g., infectious period D),

the basic PF and ensemble filters adjust their parameter estimates

over a single integration through the observed time series, whereas

the MIF and pMCMC estimates are shown, respectively, for their

final and best integrations through the observed time series

(Figure 1). As the epidemic unfolds, the parameters inferred from

the basic PF, EnKF, EAKF, and RHF gradually approach the

‘truth’. These filters were able to locate the ‘truth’ by the peak of

the epidemic. In contrast, parameters inferred from the MIF and

pMCMC were the estimates taken from the final iteration or best

simulation. By the outbreak peak, estimates for key epidemiolog-

ical parameters, such as the infectious period, D, and the

maximum daily basic reproductive number, R0max, made by the

six filters were comparable and all close to the ‘truth’ (Figure 1).

These results indicate that all six model-filter frameworks are able

to recreate the synthetic ‘truth’ by the peak of the outbreak as well

as generate reasonable parameter estimates despite the random

error added to the synthetic I time series.

Simulation of historical ILI+ time series for 115 cities in
the U.S.

We then applied these model-filter frameworks to municipal

weekly ILI+ time series collected during the 2003–04 through

2011–12 influenza epidemics, excluding the 2008–09 and 2009–

10 pandemic seasons, for 115 cities in the U.S. Overall, all the

model-filter frameworks were able to generate epidemic curves

that corresponded well with the historical ILI+ time series. The

correlation coefficients for the six model-filter frameworks over all

seasons and cities are (in descending order): 0.991 (95% CI:

0.9907–0.9913, EnKF), 0.990 (0.9896–0.9905, RHF), 0.989

(0.989–0.990, EAKF), 0.985(0.984–0.986, PF), 0.966 (0.965–

0.967, pMCMC), and 0.966 (0.964–0.967, MIF). Figure 2 shows

the epidemic curves estimated by the six filters for New York City

over the seven flu seasons. For seasons with a unimodal outbreak

(i.e., 2003–04, 2005–06, 2006–07, 2007–08), all filters were able to

fit the outbreaks well. For seasons with a multimodal outbreak (i.e.,

2004–05, 2010–11, and 2011–12), performance differed among

the filters. The basic PF and the three ensemble filters, with

parameters adjusted at each data-assimilation checkpoint during a

single integration, were more capable of matching multimodal

outbreaks.

Performance of the six filters differed most in representing

multimodal outbreaks with peaks of similar magnitudes. For

instance, cities in Arizona had an A(H3) outbreak followed by an

A(2009H1N1) outbreak of comparable (Figure 3E) or greater

(Figure 3A–D) magnitude during the 2010–11 season. As shown

in Figure 3, the MIF and pMCMC generated a single peak lying

between the two consecutive outbreaks; the EnKF and EAKF

were able to generate two peaks to some extent matching the

observations (Figure 3A–D); the RHF and the basic PF were able

to generate time series most closely matching the observations.

The RHF and the basic PF construct posterior distributions based

on the likelihood without strict constraints on the prior (i.e.,

unlike the Gaussian distribution for the EnKF and EAKF) or the

parameters (e.g., parameters are not adjusted by the pMCMC

within a single integration through the observed record). This

feature allows the RHF and basic PF to capture erratic changes in

the ILI+ time series due to factors such as a switch of circulating

strain. Figure S2 shows that the ensemble filters and the basic PF,

in particular the RHF and the basic PF, were able to adjust key

epidemiological parameters during a single integration to reflect

sudden changes in the observed epidemic curve. In contrast, the

MIF, which has parameter estimates that shift very little during

its final iteration, and the pMCMC, which uses the stationary

parameter estimates from its best proposal, both tended to

generate outbreaks with a single peak and did not represent

multimodal outbreaks as well.

To evaluate the filters more objectively, we calculated the

RMS error of each simulation. Table 1 shows the average

RMS errors over each flu season and all seasons for each filter

and Figure 4 color-maps the average RMS over repeated runs

for each filter for the 115 cities over seven flu seasons. Three

patterns are evident from Figure 4: (1) The ensemble filters and

basic PF performed better and hence had lower RMS errors

(lighter colors) in general. Of the top 10% of all filtering runs

(21,750 in total) with the lowest RMS errors (referred to as the

best runs hereafter), 28.7%, 25.0%, 19.0%, and 12.4% were

produced with the EnKF, EAKF, RHF, and PF, respectively.

Of the top 10% with the highest RMS errors (referred to as the

worst runs hereafter), 34.1% and 34.0% were produced with

the MIF and pMCMC, respectively, while only 4.9%, 5.4%,

and 8.4% were produced by the RHF, EnKF, and EAKF,

respectively. (2) Some seasons, for instance, 2003–04, 2007–08,

and 2010–11, were more difficult to simulate and had higher

RMS errors (darker colors in the corresponding columns). This

tendency is seen for all filters (Figure 4A, E, and F, and Table 1)

although more so for the three particle filters. Seasons 2007–08

and 2010–11 make up 50% of the worst runs. (3) Across all

years, cities in 3 states, Texas (10 cities), Arizona (5 cities), and

Oklahoma (2 cities), had higher RMS errors. These three states

made up 28.5%, 13.3%, and 9.0%, respectively, of the worst

Comparing Filtering Methods for Influenza Modeling
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runs. These cities often experienced multimodal ILI+ out-

breaks or higher levels of GFT ILI (e.g. peak ILI+ was 2–4

times levels observed in other seasons/cities). Such character-

istics appear to be more problematic for the particle filters,

particularly the MIF and pMCMC, whereas the ensemble

filters appear more robust in these situations. Similar patterns

are also seen when the filters are evaluated for correlation

(Figure S3).

Retrospective forecasting
We further tested the performance of the six filters in forecasting

influenza outbreaks, retrospectively, for the seven seasons. Each

filter was run for a training period, which assimilates all

observations up to the week of forecast, makes state estimates

reflecting the latest dynamics of the unfolding epidemic, and

generates a forecast for the rest of the influenza season by

integrating the SIRS model without any further filter constraint.

Figure 1. State estimation using the six filters and synthetic ‘truth’. The model-filter framework includes two model state variables and four
model parameters: (A) the number of susceptible persons S, (B) the number of infected persons I, (C) the immunity period L, (D) the infectious period
D, (E) the maximum reproductive number R0max, and (F) the minimum reproductive number R0min. The synthetic ‘truth’ for I and S was generated with
the SIRS model, for a population of 100,000, with fixed parameters: L = 3.86 y, D = 2.27 d, R0max = 3.79, and R0min = 0.97; each model-filter framework
was run repeatedly 25 times, with the same set of test data (i.e., synthetic ‘truth’ for the I time series plus random noise, shown as ‘x’ points in (B)). The
green lines are the synthetic ‘truth’, blue lines are the mean trajectory over the 25 runs, and the grey areas around them delineate the 95%
confidence interval.
doi:10.1371/journal.pcbi.1003583.g001
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Figure 5 shows the predicted ILI+ time series, both training and

forecast, generated at the peak of the influenza outbreak and 3

weeks before or after the peak for New York City in the 2004–05

and 2007–08 seasons. Forecast accuracy with the filters varies.

The 2004–05 season had three overlapping outbreaks. For this

extremely ‘challenging’ season, even at 3 weeks past the major

peak, the MIF and the pMCMC still miss this peak and greatly

over-estimate the magnitude of the outbreak; in contrast, the basic

PF and the ensemble filters are able to accurately predict the peak

and the magnitude of that outbreak (Figure 5 A–C). For the 2007–

08 season with a ‘simple’ peak, all filters are able to predict the

peak over 3 weeks before the actual event; however, the predicted

ILI+ time series made by the three particle filters match the

observations marginally better than the ensemble filters (mean

RMS error: 330.8 by the particle filters vs. 438.7 by the ensemble

filters, 1 sided t-test, p = 0.056) (Figure 5 D).

Figure 6A shows the accuracy of forecast for peak timing plotted

as a function of forecast week (i.e. week of the influenza season).

Generally, upon approaching the observed ILI+ peak (gray line),

all the filters generate more accurate forecasts. Before the observed

peak, forecasts generated using the particle filters appear to have

higher accuracy than those generated using the ensemble filters.

However, at weeks beyond the actual peak, the ensemble filter

forecasts become more accurate. This difference is particularly

true for seasons with multimodal outbreaks, e.g, season 2004–05.

Accurate prediction of peaks that have already passed is an

Figure 2. ILI+ time series generated from the six filters for New York City. Simulations are shown for seasons (A) 2003–04, (B) 2004–05, (C)
2005–06, (D) 2006–07, (E) 2007–08, (F) 2010–2011, and (G) 2011–12 (excluding the pandemic seasons). Each model-filter framework was run
repeatedly 5 times; each colored line represents one run; the ‘x’ points are the observed weekly ILI+ data.
doi:10.1371/journal.pcbi.1003583.g002
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important characteristic, indicating that the model is not

forecasting spurious future influenza incidence.

Figure 6B shows peak timing forecast accuracy for predictions

ranging from 6 weeks in the future to 6 weeks in the past (with

reference to the time of forecast). We excluded zero-week lead

forecasts as most of these predictions are made early in the season

(over 50% during the first 8 week forecasts) and are an artifact of

filter spin up during pre-outbreak weeks. For forecasts of an

outbreak peak 1 to 4 weeks in the future, the three particle filters

appear more accurate (57% [41%, 72%] vs. 49% [37%, 63%], 1

sided t-test, p = 0.016); for those predicting 1 week in the future or

1 week in the past, the pMCMC is more accurate (70% [67%,

72%] vs. 47% [31%, 64%] for the other five filters, 1 sided t-test,

p = 0.00097); and for those predicting 2 to 6 weeks in the past, the

ensemble filters, particularly the RHF, are more accurate (69%

[44%, 90%] vs. 60% [52%, 66%], 1 sided t-test, p = 0.011).

A quantification of forecast certainty is critical. When forecast

retrospectively, prediction accuracy can be evaluated based on the

complete ILI+ record for each flu season, but for real-time

forecasts, such an evaluation of accuracy is not possible. It is

possible, however, to calibrate prediction accuracy based on the

agreement of forecast outcomes. That is, a suite of particles or

ensemble members comprises each forecast, and the spread of the

collection of these individual forecasts may indicate the confidence

Figure 3. Fitting multimodal outbreaks. The model-filter frameworks were tested with historical ILI+ time series collected in the 2010–11 season
from 5 cities in Arizona: (A) Mesa, (B) Phoenix, (C) Scottsdale, (D) Tempe, and (E) Tucson; all ILI+ times series had multiple peaks of varying
magnitudes; each model-filter framework was run repeatedly 5 times; each colored line represents one run; the ‘x’ points are the observed weekly ILI+
data.
doi:10.1371/journal.pcbi.1003583.g003
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of the combined forecast (i.e., the mode in this study). Shaman and

Karspeck [4] showed that for the EAKF, decreased ensemble

variance coincided with increased forecast accuracy. Similarly, we

found that for forecasts with a mode predicted peak 1 to 10+ weeks

in the future or 0–5 weeks in the past, the ensemble filters show

increasing accuracy as ensemble variance decreased (Figure S4 D–

F). In contrast, for the particle filters, this relationship holds for

those with the mode 1–3 weeks in the future and 0–5 weeks in the

past, but is less obvious for longer lead forecasts (Figure S4 A–C).

For the particle filters, due to a much larger number of

particles (10,000 in this study v. 300 ensemble members for the

ensemble filters), more outliers may exist and lead to a larger

variance, even for those runs with a narrow kernel spread (e.g., a

fat-tailed distribution). An alternate, non-Gaussian, measure of

forecast convergence can be made by calculating the percentage of

particles/ensemble members predicting the mode (PEMPM). Using

PEMPM in place of particle/ensemble member variance, a clearer

relationship emerges in which forecast accuracy increases as

PEMPM increases (Figure 7). This relationship holds for all the

filters, for predictions 1–9 weeks in the future and 0–5 weeks in the

past.

Discussion

The optimal filter method for any dynamic system depends on

not only the characteristics of the system, but also the ultimate

application. Here we applied six filter methods to the modeling

and forecasting of influenza incidence using the same SIRS model.

We emphasize that this comparison was performed specifically in

the context of modeling and forecasting influenza and is not a

general assessment of the tested filters; consequently, the findings

may not extend to other systems. Moreover, this comparison did

not exhaustively compare all available filter algorithms; more

suitable algorithms may yet exist but were not included in this

study.

Our findings indicate that the ensemble filters and basic PF

did a better job simulating most historical ILI+ time series,

while the MIF and pMCMC struggled with multimodal

outbreaks. For the forecast of peak timing, the expected

accuracies of the six model-filter frameworks were found to be

comparable; the particle filters performed slightly better

predicting peaks 1–5 weeks in the future; the ensemble filters

were better at indicating that the seasonal peak had already

occurred. As discussed below, these outcomes are due both to

the nature of the ILI+ time series, the SIRS model, and

features of each filter.

Comparison of the filters in simulating historical ILI+ time
series

The ensemble filters and basic PF generally simulated historical

ILI+ time series better than the MIF and pMCMC. This

difference in performance appears to stem from differences in

filter design. Specifically, the ensemble filters and the basic PF

adjust model parameters continually (at each prediction-update

cycle) over the course of a single integration through the observed

time series record. In so doing, these filters can flexibly adjust the

SIRS model variables and parameters to better depict noisy

observations and compensate for the limited behavior of the SIRS

model. It is interesting that the ensemble filters, which are often

applied to more complex, higher dimension systems for which

particle filters collapse [28], are here shown to be adept at

handling simulation with a low-dimension, misspecified model.

In contrast, the MIF, over the course of multiple integrations, or

iterations, through the observed time series record, converges to a

set of parameter estimates that change very little during the final

integration (Figure S2). Similarly, the pMCMC uses a single set of

time-stationary parameter estimates for each of its multiple

integrations through the observed time series, and ultimately

selects a best-fitting combination from among these proposals. For

both the MIF and pMCMC, the final parameter estimates have

been fitted to the entire time series of observations and shift very

little (MIF) or not at all (pMCMC) within these final integrations to

compensate for model error, such as when the observed ILI+
trajectory deviates strongly from preferred model behavior.

Epidemiological key parameters are often assumed to reflect

essential characteristics of the infectious agent and are thus

thought to be fixed in time. For instance, the infectious period, D,

in our simple SIRS model is implicitly the mean of an exponential

distribution [29]. In reality, however, influenza outbreak charac-

teristics can change through time, as within population variability,

changing observational bias, or the presence of multiple strains can

effectively produce changes to key parameters. On the other hand,

estimates of influenza incidence, including the ILI+ metric used in

this study, are error-laden and do not precisely represent the

incidence of disease within a population [6,30,31]. Further, this

observational error may shift in time. For example, a sudden

increase in ILI+ may not be wholly due to a dramatic increase in

influenza incidence; rather, it could also reflect increased virulence

of the circulating strain leading to more severe symptoms and

more outpatient visits, or increased media coverage leading to

more web-search activity and higher GFT ILI rates [6]. The

parameter estimates based on such data, thus not only reflect the

Table 1. Root Mean Squared (RMS) error of the six filters in each flu season.

Season PF MIF pMCMC EnKF EAKF RHF

2003–04 277.77 (246.75–308.78) 418.09 (372.98–463.19) 373.08 (349.63–396.54) 203.87 (187.61–220.12) 163.31 (149.42–177.21) 193.61 (179.34–207.88)

2004–05 112.83 (105.33–120.32) 189.09 (176.28–201.9) 184.25 (172.88–195.63) 101.71 (96.73–106.7) 88.71 (84.5–92.91) 97.56 (93.03–102.09)

2005–06 117.21 (109.4–125.03) 182.99 (168.86–197.12) 205.52 (192.29–218.75) 104.26 (98–110.52) 94.71 (88.89–100.54) 86.85 (83.59–90.10)

2006–07 112.56 (103.33–121.8) 211.08 (191.89–230.26) 194.74 (179.44–210.04) 81.79 (77.87–85.71) 74.80 (71.34–78.26) 86.97 (83.37–90.57)

2007–08 226.63 (203.98–249.28) 384.82 (348.18–421.46) 339.03 (309.76–368.3) 141.01 (131.73–150.3) 128.37 (120.35–136.4) 147.80 (139.4–156.19)

2010–11 170.40 (157.88–182.91) 300.60 (280.65–320.55) 304.24 (284.34–324.14) 190.74 (175.19–206.29) 170.84 (157.8–183.88) 142.73 (134.27–151.19)

2011–12 106.56 (103.38–109.74) 142.53 (137.37–147.69) 155.15 (149.88–160.43) 87.45 (84.08–90.81) 82.50 (79.3–85.7) 94.69 (88.61–100.77)

All 154.51 (148.79–160.22) 253.51 (244.21–262.8) 244.99 (237.63–252.35) 126.33 (122.54–130.13) 112.53 (109.3–115.76) 117.62 (114.74–120.50)

Each of the six model-filter frameworks was run 5 times to simulate the historical ILI+ time series for 115 U.S. cities during each flu season. RMS error for each run was
calculated; the numbers presented are average RMS error and 95% confidence intervals (in parentheses) over all runs and all cities for each model-filter framework.
doi:10.1371/journal.pcbi.1003583.t001
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characteristics of the circulating strain (e.g., infectious period D),

which may be stationary, but also population behavior (e.g., web-

search and treatment seeking behavior), which can change over

time [6,7]. The basic PF and the three ensemble filters, by

adjusting both the state variables and model parameters at each

assimilation checkpoint, and are thus able to match the unfolding

epidemic trajectory flexibly. In contrast, the MIF, with parameter

estimates that shift very little during its final iteration, and the

pMCMC, with its stationary parameter estimates, are not able to

incorporate these variations. In the future, the SIRS model

Figure 5. Predicted ILI+ time series for New York City in the 2004–05 (A–C) and 2007–08 seasons (D–F). Solid lines (5 lines from five
repeated runs for each filter) are modeled based on observations during the training period, and the dashed lines are the forecasts; Red vertical lines
indicate the observed peak, and grey vertical lines mark the week the forecasts are made.
doi:10.1371/journal.pcbi.1003583.g005

Figure 4. The Root Mean Squared (RMS) error of the six model-filter frameworks used to simulate historical ILI+ for 115 major U.S.
cities during the 2003–2012 flu seasons. Each model-filter framework was run repeatedly 5 times; the RMS error between the predicted and
observed ILI+ time series was calculated for each run; the color of each rectangle, corresponding to each city (y-axis) by each filtering framework
(x-axis), indicates the average RMS error over the 5 repeated runs for epidemic seasons (A) 2003–04, (B) 2004–05, (C) 2005–06, (D) 2006–07, (E) 2007–
08, (F) 2010–2011, and (G) 2011–12.
doi:10.1371/journal.pcbi.1003583.g004
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structure could be expanded to represent fluctuations in the system

parameters. Such model changes may improve the performance of

the MIF and pMCMC.

Multimodal outbreaks (i.e., multiple peaks) often result from the

co-circulation of multiple influenza strains. Because our SIRS

model does not simulate multiple strains, the state variable and

model parameter estimates derived from the assimilation process

will reflect the aggregate features of those multiple circulating

strains. To capture multiple peaks in the ILI+ time series, the filter

must promptly catch the changes in the state variables (e.g., S, which

reflects population immunity level) and model parameters at the

switch of the dominant strain. As shown in Figure 3, this adjustment

is even more challenging when a second large outbreak closely

follows one that has depleted the susceptible pool. The ensemble

filters and the basic PF (with sufficient particles) are more capable of

adapting to such transitions and generating multiple peaks. In

contrast, the MIF and pMCMC are not able to capture such

variations. In the future, for seasons with multiple co-circulating

strains, modeling these strains individually may improve the

performance of the filters, especially the MIF and pMCMC.

In addition, the underlying assumptions of each filter can affect

its performance. Among the ensemble filters, the EnKF appears to

Figure 6. Peak timing prediction accuracy. (A) Accuracy plotted as a function of forecast initiation week; numbers greater than 52/53 weeks are
those in the next year, e.g., Week 54 is the first week in 2004 of the 2003–04 season, as 2003 had 53 weeks, and it is the second week in the rest of the
seasons; the grey vertical line indicates the peak week most frequently observed among the 115 cities. (B) Accuracy for each predicted lead time with
respect to the week of forecast; negative values represent time in the past, e.g., 21 is a peak predicted 1 week in the past. The week 0 predictions are
omitted.
doi:10.1371/journal.pcbi.1003583.g006
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perform better than the EAKF (smaller RMS error, compared

over all runs, 1-sided t-test, p = 2.9761028). The EnKF we use

here is a stochastic filter in which random perturbations are added

to the observed ILI+; the EAKF is a purely deterministic filter and

relies solely on the observed ILI+ and OEV. Lei et al. [32]

compared stochastic versus deterministic EnKFs under non-

Gaussian systems, and found that the stochastic EnKF was more

stable than the deterministic one in certain circumstances, such as

in the presence of outliers. Our system is non-Gaussian, and

outliers are common. Consistent with the findings of Lei et al. [32],

the random perturbation added to the observed state variable

seems to partially correct for these outliers and yield better

performance.

Our SIRS model has only 2 variables and 4 parameters. For

such a low-dimensional system, particle filter methods are

numerically tractable and thus likely superior to the ensemble

Kalman filter techniques, which include additional approxima-

tions. Indeed, the basic PF outperformed the other filters in some

cases (Figure 3). Likewise, the RHF appeared to perform better

than other filters in these cases; this filter, which has fewer

constraints in the distribution of its posterior, seems to capture

better abrupt changes in the dynamics of epidemics.

Figure 7. Confidence in the prediction. All forecasts, 565,500 in total, were first categorized according to the mode predicted peak, e.g., 1–3
weeks in the future (the first row) or 3–5 weeks in the past (the last row); within each category, forecasts were further binned by the percentage of
ensemble members predicting the mode (PEMPM, e.g., 50–60%) as indicated on the x-axis; the accuracy of forecasts within each bin were then
calculated, as shown on the y-axis. The size of the dot in each PEMPM bin indicates the portion of forecasts, within each category, falling into a
corresponding bin. Each column (A–F) shows the relationship between the forecast accuracy and the PEMPM for a different filter.
doi:10.1371/journal.pcbi.1003583.g007
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Comparison of filters in forecasting
For the forecast of influenza, previous studies [4,6,7] indicate

that the observation data type (e.g., ILI vs. ILI+), geographic and

demographic characteristics (e.g., municipal area and population

density), model form (e.g., whether daily humidity data are used),

and the choice of filter method may all affect the accuracy of a

forecast. In this study, we have focused exclusively on the choice of

filter method. We found the filters that best simulated observed

ILI+ time series did not necessarily generate better forecasts.

For peak timing forecast, filter accuracy varied temporally with

certain filters excelling over specific windows of time but working

less optimally during other periods. Overall, the particle filters

produced more accurate forecasts before the observed peak, while

the ensemble filters were more accurate after the actual peak. In

addition, the performance of the model-filter frameworks varied

geographically. We found that some cities tended to be more

challenging for modeling (Figure 2) or forecasting (Figure S5);

however, the cities most problematic for retrospective modeling

(e.g., the 2 Oklahoma cities and the 5 Arizona cities) were not

consistently the ones most challenging to forecast. Preliminary

analysis of real-time forecasts made during the 2012–13 season in

the U.S. also revealed a tendency toward greater forecast accuracy

for cities with smaller populations, lower population density, and

smaller geographic area [7]. As in He et al. [24], we found that

parameter estimates tend to be biased for certain challenging

outbreaks (e.g., overestimation of the infectious period, D, as

shown in Figure S2); yet interestingly, these potentially biased

estimates did not seem to degrade prediction over short time

scales. Further examination of the effects of filter type on forecast

accuracy at the municipal level, as well as factors modulating that

accuracy, is warranted.

In addition, the forecast comparison presented here focused

exclusively on the prediction of outbreak peak timing; filter

performance may differ when forecasting other metrics, such as

outbreak magnitude and duration. In particular, all six filters seem

to overestimate outbreak magnitude when the forecast is made at a

time close to the observed peak (Figure 5); this issue may arise from

model misspecification or inadequate estimation of system

parameters and initial conditions prior to forecast—issues that

relate to model error and data richness. Furthermore, the

characteristics, timing or location of an outbreak (e.g., unimodal

vs. multimodal outbreaks, before vs. after an observed peak, small

city vs. large city), may all affect filter performance. Further study

is needed to determine the factors that make an outbreak more or

less predictable by a given model-filter combination.

We have shown that for all the six filters, the confidence in a

forecast increases as a larger percentage of individual forecasts (i.e.

particles or ensemble members) agree with the mode predicted

peak. This relationship, which essentially places greater confidence

in predictions with less disagreement among particles or ensembles

members, allows a forecaster to gauge the expected accuracy of a

forecast in real time. Future study will look for similar relationships

in the forecasts of other metrics such as influenza incidence at the

peak.

Supporting Information

Figure S1 Effect of the number of particles/ensemble
members. The filters were run with either 300, 3000, or 10,000

particles/ensemble members, to model the historical ILI+ time

series from 2003–04 to 2011–12 (excluding the pandemic seasons),

for Atlanta, Boston, Chicago, Los Angeles, New York City, and

Seattle. Each ILI+ time series was modeled using each filter 5

times, and Root Mean Squared (RMS) error was calculated for

each run. Boxplots of the RMS errors over the 5 runs show the

performance of each filter with different particle/ensemble sizes.

(PDF)

Figure S2 Model parameter estimates for five AZ cities
during the 2010–11 season. Each panel (A–G) shows the time

series of a model state (S, I, etc.) simulated by each of the six filters

(specified in each plot) for the five AZ cities (specified on the top of

each row). The ILI+ time series (A) are the same as shown in

Figure 3 in the main text. Each filter was run 5 times; each colored

line represents one run.

(PDF)

Figure S3 Correlations for fitting historical ILI+ time
series. Each model-filter framework was run 5 times; the

correlation between the predicted and observed ILI+ time series

was calculated for each run; the color of each rectangle,

corresponding to each city (y-axis) by each model-filter framework

(x-axis), indicates the average correlation over the 5 repeated runs

for epidemic seasons (A) 2003–04, (B) 2004–05, (C) 2005–06, (D)

2006–07, (E) 2007–08, (F) 2010–2011, and (G) 2011–12.

(TIF)

Figure S4 Accuracy vs. ensemble spread. All forecasts,

565,500 in total, were first categorized according to mode

predicted peak, e.g., 1–3 weeks in the future (the first row) or 3–

5 weeks in the past (the last row); within each category, forecasts

were further grouped by the range of log ensemble variance, as

indicated on the x-axis; the accuracy of forecasts within each bin

were then calculated, as shown on the y-axis. Dot size indicates the

portion of forecasts within each bin. Each column (A–F) shows the

relationship between the forecast accuracy and the logarithm

ensemble variance for a different filter.

(TIF)

Figure S5 Mode predicted peak accuracy as a function
of time relative to the observed peak. Accuracy for each

filter is averaged over all seasons and all runs for each city (i.e. 7

seasons and 5 runs), for forecasts made 3 wk before (A), 1 wk

before (B), at (C), 1 wk after (D), or 3 wk after (E) the local peak

outbreak of the corresponding season.

(TIF)

Text S1 Supporting information. Supplemental methods,

testing, and discussion.

(DOC)
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