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Abstract

Forecasts of influenza activity in human populations could help guide key preparedness tasks. We conducted a scoping
review to characterize these methodological approaches and identify research gaps. Adapting the PRISMA methodology for
systematic reviews, we searched PubMed, CINAHL, Project Euclid, and Cochrane Database of Systematic Reviews for
publications in English since January 1, 2000 using the terms ‘‘influenza AND (forecast* OR predict*)’’, excluding studies that
did not validate forecasts against independent data or incorporate influenza-related surveillance data from the season or
pandemic for which the forecasts were applied. We included 35 publications describing population-based (N = 27), medical
facility-based (N = 4), and regional or global pandemic spread (N = 4) forecasts. They included areas of North America
(N = 15), Europe (N = 14), and/or Asia-Pacific region (N = 4), or had global scope (N = 3). Forecasting models were statistical
(N = 18) or epidemiological (N = 17). Five studies used data assimilation methods to update forecasts with new surveillance
data. Models used virological (N = 14), syndromic (N = 13), meteorological (N = 6), internet search query (N = 4), and/or other
surveillance data as inputs. Forecasting outcomes and validation metrics varied widely. Two studies compared distinct
modeling approaches using common data, 2 assessed model calibration, and 1 systematically incorporated expert input. Of
the 17 studies using epidemiological models, 8 included sensitivity analysis. This review suggests need for use of good
practices in influenza forecasting (e.g., sensitivity analysis); direct comparisons of diverse approaches; assessment of model
calibration; integration of subjective expert input; operational research in pilot, real-world applications; and improved
mutual understanding among modelers and public health officials.
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Introduction

Seasonal influenza epidemics caused by influenza A and B

viruses occur annually during the winter in temperate regions,

resulting in around 3–5 million cases of severe illness and 250,000–

500,000 deaths worldwide each year [1]. In contrast to seasonal

influenza, novel influenza A strains capable of sustained person-to-

person transmission arise occasionally. These novel strains may

evade existing antibody immunity and give rise to pandemic

outbreaks. For example, the 1918 pandemic caused around 20–40

million deaths [2], while pandemics in 1957 and 1968 involved

many infections but fewer deaths than in the 1918 pandemic. A

2009 pandemic strain, influenza A(H1N1)pdm09, continues to

circulate as a seasonal virus.

Accurate forecasts of influenza activity based on predictive models

could facilitate key preparedness actions, such as public health

surveillance, development and use of medical countermeasures (e.g.,

vaccine and antiviral drugs), communication strategies, deployment

of Strategic National Stockpile assets in anticipation of surge

demands (e.g., ventilators), and hospital resource management

(e.g., for staf and beds). Early in a potential pandemic, forecasts of

international spread could help guide public health actions globally.

Previous reviews have assessed influenza modeling (e.g., [3–6]),

but to our knowledge only one focused specifically on the use of

models to forecast influenza activity, as opposed to other

important applications of influenza modeling (such as improving

understanding of the epidemiological dynamics or evaluating

control strategies). This recent review, by Nsoesie et al. [7],

identified 16 studies that aimed to forecast influenza outbreaks at

local, regional, national, or global level. To more systematically

characterize influenza forecasting methods and applications, and

identify promising approaches and research gaps, we conducted a

scoping review of the peer-reviewed influenza forecasting litera-

ture. We assess differences in methodological approaches and

provide recommendations for future influenza forecasting models.

Materials and Methods

We adapted the PRISMA methodology [8] for our scoping

review. In contrast to a systematic review, which focuses on a well-
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defined research question and may include a narrow range of

study designs, a scoping review addresses broader topics and may

include various study designs [9]. We included studies that

described methods to forecast future influenza activity in human

populations using dynamic influenza-related surveillance data, and

that tested the forecasting approach against independent data (real

or simulated). We defined ‘‘dynamic’’ data as data collected during

an epidemic or pandemic to make predictions about its subsequent

course. We excluded studies that predicted current influenza

activity not observed at the time of prediction because of reporting

delays (sometimes called ‘‘nowcasting’’).

We searched PubMed, CINAHL, Project Euclid, and Cochrane

Database of Systematic Reviews for publications in English since

January 1, 2000 using the terms ‘‘influenza AND (forecast* OR

predict*)’’ in any field, and analyzed abstracts of returned

publications to identify candidates for full-text review (i.e., studies

for which inclusion criteria were met or for which it was not

possible to determine whether inclusion criteria were met). We

also manually searched the reference lists of included papers, our

bibliographies, and the International Journal of Forecasting, and

considered recommendations of colleagues.

We abstracted the data as follows. One of us conducted the

literature search on December 4, 2013 and determined which

publications to include based on the abstract or full text. For

included publications, the reviewer recorded the geographic

setting, data timeframe, whether the focus was seasonal or

pandemic influenza, details of the input data and analytical

methods, and reported forecast accuracy. Another reviewer

independently abstracted the data from selected publications.

The two reviewers resolved discrepancies through consensus.

Results

We included 35 publications in the review [10–44] (Figure 1).

Twenty six (74%) of the studies were published in 2009 or later,

with more than one-third published in 2012 or 2013. The studies

fell into 3 categories based on the epidemiological application:

population-based seasonal influenza forecasting (N = 27 publica-

tions), medical facility-based forecasting of patient counts for

seasonal or pandemic influenza (N = 4), and regional or global

spread forecasting for pandemic influenza (N = 4) (Table 1). Most

studies included areas of North America (N = 15) or Europe

(N = 14 publications), while a few included areas in the Asia-

Pacific region (N = 4) or had global scope (N = 3) (Table 1).

Twenty-eight studies employed temporal forecasting without a

spatial component, while 7 made forecasts in time and space

(Table 1). The studies used diverse forecasting methods, with 18

using statistical approaches without models for epidemiological

processes and 17 employing epidemiological models (Table 1).

Among the statistical approaches, methods included time series

models (N = 9 publications), generalized linear models (N = 4),

Bayesian networks (N = 2), classification methods (N = 2), survival

analysis (N = 1), and a prediction market (N = 1) (Table 1). The

mechanistic approaches included compartmental models, which

model transitions across various sub-populations (susceptible-

infectious-removed [SIR] models and variants) (N = 12 publica-

tions); and agent-based models (ABMs), which model exposure,

infection, transmission and behaviors for each individual in the

population (N = 5) (Table 1).

Several studies coupled mechanistic models with methods to

update parameter estimates and forecasts as new influenza-related

surveillance data becomes available. Nsoesie et al. [11,13]

developed a simulation-optimization algorithm for their ABM,

which iteratively proposes estimates of key epidemiological

parameters, uses those estimates to simulate the future course of

the epidemic, and compares observed surveillance data to forecasts

to revise the parameter estimates. Ong et al. [25] and Shaman et

al. [10,16] used data assimilation techniques to incorporate

influenza-related surveillance data into their compartmental

models and update parameter estimates and forecasts.

The studies used dynamic virological (N = 14), syndromic

influenza-like illness (ILI; N = 13) and other influenza-related

surveillance data to forecast influenza activity (Table 2). Birrell et

al. [19] included serological data to model pre-existing immunity,

as well as virological and syndromic data. Four studies included

internet search query data (Google Flu Trends) [10,11,16,37]. Six

studies considered meteorological data [10,16,26,37–39], with 3

including the meteorological predictors in the final forecasting

model [10,16,26].

While most studies reported various modeling outcomes, such as

ILI time series, the specific outcomes used in model validation

varied. Among the 27 population-based forecasting studies, 16

used weekly predictions of weekly incidence 1 or more weeks into

the future in the validation (Table 3). Nine studies predicted the

timing of the epidemic peak or incidence at the peak; all

performed validation using at least some forecasts made at least

4 weeks before the actual peak [10–13,16–18,29,31]. The facility-

based forecasting studies used 1-step-ahead [37–39] or n-step-

ahead [40] predictions of visit counts over step sizes of 1 day [40]

to 1 month [39]. The regional or global pandemic spread

forecasting studies used early data from the 2009 influenza

A(H1N1)pdm09 pandemic to predict outcomes at national level

across countries, including pandemic arrival, and peak incidence

and time of peak.

The studies used various metrics for validation of forecasts

against independent data, with mean (or median) absolute error

and mean absolute percent error the most common metrics for

forecasts of incidence (i.e., daily, weekly, or monthly incidence;

peak incidence; or cumulative incidence) (Table 4; studies

forecasting peak week or epidemic duration reported the time

difference between predicted and observed values in the valida-

tion). Among all studies, only 2 reported accuracy as a function of

estimated forecast variance [10,16].

Comparing the accuracy of the forecasting applications is

difficult because forecasting methods, forecast outcomes, and

reported validation metrics varied widely. While many studies

compared models with different sets of predictors, only 2

compared distinct modeling approaches. Shaman et al. [10]

compared their susceptible-infectious-recovered-susceptible (SIRS)

compartmental model, coupled to an ensemble-adjusted Kalman

filter (SIRS-EAKF), to various resampling approaches using

previous influenza seasons. The SIRS-EAKF model was consid-

erably more accurate in predicting ILI peak week for the 2012–

2013 season across 108 US cities. Merler et al. [43] compared the

performance of an ABM and a simpler compartmental model in

predicting the course of the 2009 influenza A(H1N1)pdm09

pandemic in Europe, and found the simpler model failed to predict

pandemic dynamics and attack rate accurately across countries.

Among the 17 studies that used epidemiological models, 8

provided results of sensitivity analysis for clinical, epidemiological,

demographic, and other parameters [10,12,16,19,34,41–43];

however, Nsoese et al. published a sensitivity analysis separately

[45] for the ABM used in publications included in this review

[11,13,22].

Influenza Forecasting in Human Populations
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Discussion

This review shows accelerating publication of influenza

forecasting methods in recent years. We identified diverse

modeling applications to forecast influenza and ILI activity in

human populations, including various purely statistical approaches

and methods based on mechanistic (i.e., epidemiological) model-

ing. Most models predicted influenza activity in a specific

population, while several others predicted presentations at medical

facilities or regional or global pandemic spread. Several models

incorporated additional data besides clinical or laboratory-based

surveillance data to generate forecasts, including internet search

queries and meteorological data. The outcomes predicted and

metrics used in validation varied. Most studies using mechanistic

models did not present a sensitivity analysis for key epidemiolog-

ical assumptions.

The review provides an overview and assessment of influenza

forecasting, describing current approaches and highlighting

research needs for this promising new domain of public health

preparedness. Since the focus was on the use of models to forecast

influenza activity, we included only studies that validated models

against independent data, a crucial part of predictive model

development since using the same data for model fitting and

testing inflates estimates of predictive skill [46]. This approach

complements the review of Nsoesie et al. [7], which did not apply

this restriction and provided a more detailed consideration of the

outcomes predicted and advantages and disadvantages of the

modeling methods employed.

The study has some limitations. We cannot exclude the

possibility we failed to identify relevant studies, though we used

broad search terms and searched multiple databases, and we

would not have identified newer studies described only in

conference proceedings, or unpublished studies. Papers correctly

(based on our criteria) excluded may yet prove useful for influenza

forecasting, and further review of these may suggest new

methodologies for generating influenza predictions. The review

also cannot serve as a definitive guide to forecasting approaches

with greater predictive skill, since settings and methodologies

varied widely and only 2 studies [10,43] compared distinct

modeling approaches. We approached the review as a scoping,

rather than a systematic, review because of this diversity. Also, the

purpose was not to offer detailed critiques of modeling method-

ologies. Such an assessment would be useful, but we believe that a

more broadly-based review of forecasting applications provides

necessary context for this and other more focused assessments.

The results suggest several areas of practice and research to

advance influenza forecasting in human populations (Figure 2).

First, developers of influenza forecasting models and technologies

Figure 1. Literature search flow.
doi:10.1371/journal.pone.0094130.g001
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should adhere to good practices in development, implementation,

application, and description of epidemiological models. One

possible guide [47], developed for veterinary epidemiology but

applicable to studies in human populations, provides several

recommendations that could facilitate comparison and implemen-

tation of influenza forecasting models and technologies. These

include use of sensitivity analysis to assess dependence of the model

to all chosen parameter values and assumptions, and provision of

the computer code implementing the model (in the publication or

on request).

However, in light of the methods identified in our review, some

modification to these and related guidelines may be appropriate

for influenza forecasting. For example, some approaches (e.g.,

[10,11,13,16,25]) optimize parameter values iteratively, as part of

the forecasting algorithm; model developers do not explicitly

assign parameter values or distributions. We encourage developers

and users of epidemiological forecasting models to develop

common, recommended practices for the field.

Second, there is a need for comparisons of diverse forecasting

models using common input data and validation approaches and

metrics. While some of the general advantages and disadvantages

Table 1. Overview of influenza forecasting studies.

Ref. Influenza Application Setting Forecast Type Forecasting Method

Population-based forecasting studies

[10] Seasonal United States Temporal Mechanistic (compartmental model)

[11] Seasonal Seattle Temporal Mechanistic (ABM)

[12] Seasonal Montreal Temporal Mechanistic (ABM)

[13] Unspecified Montgomery Co., VA; Seattle; Miami Temporal Mechanistic (ABM)

[14] Pandemic (2009) New Zealand Temporal Mechanistic (compartmental model)

[15] Seasonal Germany Spatial-temporal Statistical (time series model)

[16] Seasonal New York City Temporal Mechanistic (compartmental model)

[17] Seasonal Slovenia Temporal Statistical (GLM, regression tree)

[18] Pandemic (2009) Italy Temporal Mechanistic (ABM)

[19] Pandemic (2009) London Temporal Mechanistic (compartmental model)

[20] Seasonal United States Temporal Statistical (GLM)

[21] Pandemic (2009) Japan Temporal Mechanistic (compartmental model)

[22] Unspecified Los Angeles; New York; Seattle Temporal Statistical (classification)

[23] Pandemic (2009) Japan Temporal Mechanistic (compartmental model)

[24] Seasonal Germany Spatial-temporal Statistical (time series model)

[25] Pandemic (2009) Singapore Temporal Mechanistic (compartmental model)

[26] Seasonal Hong Kong; Maricopa Co., AZ Temporal Statistical (time series model)

[27] Seasonal 2 US jurisdictions (not identified) Temporal Statistical (Bayesian network)

[28] Seasonal United Kingdom (boarding school) Temporal Mechanistic (compartmental model)

[29] Seasonal Sweden Temporal Statistical (GLM)

[30] Seasonal United Kingdom Temporal Statistical (time series model)

[31] Pandemic (1918, 1957, 1968) United Kingdom Temporal Mechanistic (compartmental model)

[32] Seasonal Iowa Temporal Statistical (prediction market)

[33] Seasonal Massachusetts Temporal Statistical (Bayesian network)

[34] Seasonal United States, United Kingdom Temporal Mechanistic (compartmental model)

[35] Seasonal France Spatial-temporal Statistical (time series model)

[36] Seasonal Scotland Temporal Statistical (GLM)

Facility-based forecasting studies

[37] Seasonal Baltimore Temporal Statistical (time series model)

[38] Pandemic (2009) Washington, DC Temporal Statistical (time series model)

[39] Seasonal Baltimore Temporal Statistical (time series model)

[40] Seasonal Barcelona Temporal Statistical (time series model)

Regional or global pandemic spread forecasting studies

[41] Pandemic (2009) Global Spatial-temporal Mechanistic (compartmental model)

[42] Pandemic (2009) Global Spatial-temporal Mechanistic (compartmental model)

[43] Pandemic (2009) Europe Spatial-temporal Mechanistic (ABM)

[44] Pandemic (2009) Global Spatial-temporal Statistical (survival analysis)

GLM, generalized linear model; ABM, agent-based model.
doi:10.1371/journal.pone.0094130.t001
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of various ILI forecasting approaches have been identified [7],

direct comparisons would yield insight into methods that perform

better than others under particular circumstances. Such initiatives

are underway at the Centers for Disease Control and Prevention

[48], Intelligence Advanced Research Projects Activity, and

Department of Defense, and could help guide future efforts.

Head-to-head comparisons of automated detection algorithms to

identify disease outbreaks in syndromic surveillance data [49] also

could be a useful example for comparing forecasting methods.

Third, assessments of forecasting methods should demonstrate

how the accuracy of the method varies and should quantify this

variability for use in real-time prediction. That is, it is not sufficient

merely to predict an event; the likelihood of that prediction should

also be ascribed. This quantification of likelihood, or expected

accuracy, mirrors practices used in numerical weather prediction–

e.g., a forecast of an 80% chance of rain tomorrow is a highly

calibrated prediction of the likelihood of an event. We believe this

aspect of model performance – calibration – will be a key

Table 2. Dynamic surveillance data used in forecasting studies.

Ref. Data Timeframe Influenza Data Meteorological Data

Virology ILI Other

Population-based forecasting studies

[10] 2012-3 * * Google Flu Trends *

[11] 2007-8, 2012-3 Google Flu Trends

[12] 2001-6 *

[13] NA (simulated data) Simulated incidence

[14] 2009 *

[15] 2001-8 *

[16] 2003-5, 2007-9 Google Flu Trends *

[17] 2006-2009 * Medication sales

[18] 2009 *

[19] 2009-10 * * Serology

[20] 1997-2009 * *

[21] 2009-10 *

[22] NA (simulated data) Simulated incidence

[23] 2009-10 Medication prescriptions

[24] 2001-8 *

[25] 2009-10 *

[26] 2004-9 * *

[27] 2003 *

[28] 1978 Confined to bed

[29] 1998-2006 *

[30] 1992-2005 *

[31] 1918-9, 57-8, 68–70 * Influenza deaths

[32] 2004-5 Prediction market trades

[33] 1998-2000 *

[34] 2001-2 (US), 2003-4 (UK) *

[35] 1984-2002 *

[36] 1972-99 *

Facility-based forecasting studies

[37] 2004-11 * Google Flu Trends *

[38] 2009-11 * *

[39] 2002–2008 * *

[40] 2004–2008 *

Regional or global pandemic spread forecasting studies

[41] 2009 Pandemic emergence

[42] 2009–10 Pandemic emergence

[43] 2009 Pandemic emergence

[44] 2009 Pandemic emergence

ILI, influenza-like illness.
doi:10.1371/journal.pone.0094130.t002
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consideration for practitioners who might use a forecasting model

in an operational setting. Reporting the range or confidence

intervals associated with predicted outcomes is essential in

validation studies, but this alone does not help a user determine

how much certainty a specific forecast warrants.

Fourth, future operational forecasting efforts should develop

explicit approaches that incorporate additional expertise and

analysis from scientists and public health officials. (The only

documented systematic elicitation of expert judgment, for any type

of modeling approach, in our review was the prediction market of

Polgreen et al. [32].) Similar methods exist in weather and climate

forecast (e.g., [50]). For example, meteorological forecasts are

typically statistically post-processed to account for inherent model

biases, and new methods for this post-processing are still being

developed [51]. These combined results are then further vetted by

meteorologists to monitor anomalous prediction behavior, and

communicated to the public and decision makers. Infectious

disease forecasting will need to explore and develop analogous

frameworks for the post-processing of multiple forecast streams,

the monitoring and calibration of these probabilistic forecasts, and

the communication of these predictions to public health officials

for decision support.

Fifth, now that diverse ILI forecasting approaches are available

and some have demonstrated promising performance in validation

studies, assessments of real-world applications could spur the

transition of these approaches to public health practice. Pilot

studies in health departments, medical facilities, or other settings

could assess forecasting applications not only for predictive skill,

but for user acceptance, contributions to public health decision-

making, and other outcomes at the user-model interface.

Evaluations should compare various modeling approaches on

these key characteristics, to identify approaches useful (not just

accurate) in real-world settings. For example, forecasting ILI time

series or peak week could be useful for anticipating needed surge

capacity of personnel and materials, but modeling methods that

Table 3. Forecast outcomes used in model validation.

Outcome Number of studies (refs.)

Population-based forecasting studies

Weekly incidence 16 [12,13,15,17–19,21,23–26,30,32–35]

Daily incidence 3 [14,27,28]

Peak time and/or incidence 9 [10–13,16–18,29,31]

Cumulative incidence 3 [13,20,36]

Epidemic duration 2 [12,31]

Facility-based forecasting studies

Monthly visits 1 [39]

Weekly visits 1 [40]

Visits over 3 days 1 [38]

Peak visits 1 [37]

Regional or global pandemic spread forecasting studies

Peak incidence (national) 1 [43]

Time of pandemic arrival (national) 1 [44]

Time of peak (national) 2 [42,43]

Cumulative incidence (U.S.) 1 [41]

doi:10.1371/journal.pone.0094130.t003

Table 4. Validation metrics used in incidence forecasts.

Metric Number of studies (refs.)

MAE or MdAE 6 [21,25,29,30,39,41]

MAPE 5 [12,27,31,32,36]

RMSE 5 [13,26,35,38,39]

Correlation or t-test 5 [13,20,27,33,35]

95% CI 4 [11,13,38,43]

Scoring rules 2 [15,24]

Forecast confidencea 1[37]

No quantitative metric 8 [14,17–19,23,28,34,40]

MAE, Mean absolute error; MdAE, Median absolute error; MAPE, Mean absolute percent error; RMSE, Root mean square error.
aForecast confidence was defined as ‘‘the percentage of forecast values within a predefined difference of the actual data during an influenza peak (here chosen as 20%
of the mean of the maximal point of the influenza peak).’’
doi:10.1371/journal.pone.0094130.t004
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permit re-estimation of outcomes under various response scenarios

could provide additional support to decision-makers.

Last, model developers and decision-makers must understand

each other’s work better. Developers are more likely to provide

useful tools if they know the key decisions users will make in

preparing for or responding to influenza outbreaks. They can

develop and evaluate models around those specific decisions. To

apply forecasting models effectively, decision-makers should

become familiar with the modeling tools they might use, and

understand their strengths, limitations, and key assumptions.

Efforts to link modelers and public health officials through

seminars, on-the-job observation, exercises, and other activities

could foster this mutual understanding and improve collaboration

during emergencies.
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