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Abstract

The 2009 H1N1 influenza pandemic provides a unique opportunity for detailed examination of the spatial dynamics of an
emerging pathogen. In the US, the pandemic was characterized by substantial geographical heterogeneity: the 2009 spring
wave was limited mainly to northeastern cities while the larger fall wave affected the whole country. Here we use finely
resolved spatial and temporal influenza disease data based on electronic medical claims to explore the spread of the fall
pandemic wave across 271 US cities and associated suburban areas. We document a clear spatial pattern in the timing of
onset of the fall wave, starting in southeastern cities and spreading outwards over a period of three months. We use
mechanistic models to tease apart the external factors associated with the timing of the fall wave arrival: differential seeding
events linked to demographic factors, school opening dates, absolute humidity, prior immunity from the spring wave,
spatial diffusion, and their interactions. Although the onset of the fall wave was correlated with school openings as
previously reported, models including spatial spread alone resulted in better fit. The best model had a combination of the
two. Absolute humidity or prior exposure during the spring wave did not improve the fit and population size only played a
weak role. In conclusion, the protracted spread of pandemic influenza in fall 2009 in the US was dominated by short-
distance spatial spread partially catalysed by school openings rather than long-distance transmission events. This is in
contrast to the rapid hierarchical transmission patterns previously described for seasonal influenza. The findings underline
the critical role that school-age children play in facilitating the geographic spread of pandemic influenza and highlight the
need for further information on the movement and mixing patterns of this age group.
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Introduction

Understanding the spatio-temporal spread of infectious disease is

important both for design of control strategies and to deepen

fundamental knowledge about the interaction between epidemic

dynamics and spatial mixing of the host population. Dynamic models

and statistical analyses have provided key insights into the spread of a

number of acute, directly transmitted infections of humans, including

measles, rotavirus, dengue, pertussis, and seasonal and pandemic

influenza [1,2,3,4,5,6,7,8,9,10]. A unifying feature of these analyses is

the interaction of coupling between populations (often expressed in

terms of ‘gravity’ or ‘radiation’ models for hierarchical spatial spread,

[1,2,3,5,11,12]) and demographic or environmental factors modulat-

ing transmission, in particular the seasonal aggregation of children in

schools [13,14,15,16,17], or seasonal variation in humidity [18,19]

Previous efforts have sought to forecast the likely spatial spread

of pandemic influenza with model simulations accounting for

intricate host demography and mixing data [10,20]. However, a

lack of finely resolved epidemiological data complicates validation

and testing of such models. Analysis of long-term influenza-related

mortality time series has highlighted the role of daily work

commute as a driver of the regional spread of seasonal influenza in

the US [3]. While mortality records were useful to explore the

spatial transmission of the devastating 1918 pandemic in the US

and UK [5], such data typically lack power to investigate disease

patterns in small geographical areas or during more recent and

milder seasons. However, increased disease surveillance and data

availability in the context of the 2009 A/H1N1pdm09 pandemic

provides a unique opportunity to explore the spatial spread of

influenza in more detail, identify further data gaps, and validate

existing models and theory. Here we used a rich dataset of

influenza-like-illness records compiled from electronic medical

claims and covering about 50% of outpatient physician visits in

2009 across the US to study influenza spread with an unprece-
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dented level of detail. These electronic claims data have only

recently been used for public health purposes, in particular to

investigate the reduction in diarrhoea outpatient visits associated

with Rotavirus vaccine introduction [21].

The 2009 pandemic spread rapidly across the world, soon after

the putative emergence of the pandemic virus in Mexico [22]. The

earliest laboratory-confirmed cases of pandemic influenza infec-

tion were reported in April 2009 in the South Western US.

Subsequently, some cities, such as New York, Boston and

Milwaukee, experienced intense community transmission in spring

and summer [23,24]. For most of the country however, there was

no widespread outbreak until the autumn of 2009 when most

pandemic-related deaths occurred [23]. Recent work has suggest-

ed that school fall terms starts were associated with the onset of the

fall pandemic onsets in different US states [15], while reactive

school closure in the spring reduced influenza transmission in

Hong-Kong and Mexico [25,26]. Another candidate driver of

pandemic spread is low absolute humidity, which according to

experimental and epidemiological studies may favour the trans-

mission of influenza [18,19,27].

To determine the relative contributions of population move-

ments, demographics, school openings, prior immunity, and

environmental factors to pandemic spread, we fit a series of

mechanistic models to our highly resolved US influenza surveil-

lance datasets [28]. To track pandemic activity, we compile weekly

epidemic indicators of the number of influenza-like illness (ILI)

patients stratified by zip code, providing disease information in

271 administrative areas, covering more than 90% of the US

population in the 48 contiguous states (Figure 1, top panel). We

focus on the dynamics of the fall wave of the 2009 H1N1pdm09

pandemic, as all sites experienced a clearly defined pandemic

onset between July and November 2009.

Results

Our analysis begins with a simple descriptive analysis of

observed spatial autumn 2009 pandemic patterns and correlations

with putative drivers. Armed with these empirical results, we

construct a series of mechanistic epidemiological models to

determine the importance of different processes for pandemic

spread.

Descriptive analysis
Our spatial analysis relies on the estimation of pandemic onset

dates, which are based on the date when ILI incidence exceeded a

seasonal threshold during summer-autumn 2009 [29,30] (as most

onset dates occurred in autumn, we refer to this pandemic wave as

the ‘‘autumn wave’’ for the sake of simplicity; see methods for

details). We disregard receipt of pandemic influenza vaccine as

nearly all doses were administered after the onset of the autumn

wave [31].

Onset dates range between 26th July to 1st November, 2009 in

the 271 locations, with a clear spatial patterning starting in South

East US and spreading in all directions within around three

months (Figure 1 and Supplementary Movie). Visually, the hub of

the South Eastern spread is in Alabama or Georgia, and Dothan,

Alabama had the earliest onset in these states (see also Figure S1).

We correlate estimates of onset dates with four different putative

drivers of spatial transmission: date of school term start [15], great

circle distance from Dothan, distance on the nearest neighbour

network from Dothan (see Figure 1b), and absolute humidity

indicators (considering both raw values and anomalies in days 7–

10 prior to pandemic onset, as in past work [18,19]). Autumn

pandemic onset is highly correlated with distance metrics and

school starts (correlation coefficients 0.35–0.72, P,0.0001;

Figure 2a–c) and moderately correlated with absolute humidity

(coefficient 20.63, P,0.0001 for raw AH, and 0.22, P = 0.001 for

anomalies; Figure 2d–e). Outliers in this correlation analysis may

indicate a second important seeding event in California; hence

correlations with distance are even stronger if restricted to the

Eastern US (Figure 2 red points, correlation coefficient 0.91 and

0.92, P,0.0001). As AH in each location is generally decreasing

through the autumn, the correlation between onset and AH at

onset must be treated with some caution. However there is more

signal here than can be explained just by the general temporal

trend in AH: the correlation coefficient (20.63) is stronger than

that obtained from 10,000 random permutations of onset dates

between locations.

Partial correlations were computed for each combination of

predictors (Table 1). For the residuals from regression with

geographic or network distance, weak but significant correlations

were found with absolute humidity (coefficient 20.26 and 20.27,

p,1024) and schools (0.16, p = 0.02). For the residuals from

school openings and both humidity measures, any of the other

variables gave a typically moderate to high correlation (range of

coefficients, 0.16–0.90, P,0.02). This finding suggests that a

purely spatial process may dominate in explaining the timing of

the autumn wave, perhaps modulated by environmental and

school-related factors. However analysis of a more mechanistic

epidemiological model is required to distinguish the relative

contributions and interactions of these and other potential drivers.

Mechanistic epidemiological models
We build a simple spatial model for the spread of influenza,

inspired by previous work on the 1918 pandemic [5] (see methods

for full details). Briefly, treating each of 271 locations in the US as

the statistical units, a maximum likelihood approach is used to fit

the observed pandemic onset dates. The parametric model of the

force of infection, the rate of outbreak initiation for each location,

includes the contribution of both local and long-distance

transmission. The outbreak in each location can be sparked by

Author Summary

The determinants of influenza spatial spread are not fully
understood, in part due to the insufficient geographic
resolution of incidence data. We address this using a fine-
grained private sector electronic health database of
insurance claims data from health encounters in the US
during 2009. We used physician diagnoses codes to
generate a dataset of the weekly number of office visits
with diagnosed influenza-like illness for 271 US locations.
Applying statistical and mathematical models to these
disease data, we find that the main autumn wave of the
2009 pandemic in the US was remarkably spatially
structured. Its onset in the South Eastern US precipitated
a slow radial spread that took 3 months to diffuse across
the country. These patterns were replicated by models
that included short-distance spatial transmission between
nearby locations and increased transmission rates when
school was in session. Our results contrast with previous
modelling studies that indicated that environmental
factors, population sizes, and long-distance transmission
events (air traffic) are major determinants in disease
spread. We conclude that the 2009 pandemic autumn
wave spread slowly because transmissibility of the
influenza virus was relatively low and children (who travel
long distance far less than adults) were the predominant
sources of infection.

Spatial Transmission of 2009 Pandemic Influenza

PLOS Computational Biology | www.ploscompbiol.org 2 June 2014 | Volume 10 | Issue 6 | e1003635



transmission from another nearby location: this contribution to the

force of infection is modelled using a power law kernel driven by

population size and distance (hereafter referred to as the gravity

model) [1,3,5,12]. Alternative spatial kernels based on different

model formulations or distance metrics were also explored,

including Gaussian kernel and grid distance (methods). Further,

we introduced a normalization parameter that quantifies how

connectivity may depend on the number and size of neighbouring

populations, following [5], akin to the difference between density-

dependent and density-independent transmission [32]. In addition

to short-range disease transmission, a term was included to

account for the background probability of an outbreak spark

(hereafter referred to as external seeding), which could be seeded

by imported infections from distant locations (domestically or

internationally) or even a low-level persistent local chain of

infection that survived the summer. Both external seeding and

local transmission were also allowed to depend on whether or not

schools were in session and also to scale according to population

sizes to some power. The force of infection was also allowed to be

modulated by previous immunity to pandemic A/H1N1pdm09 (as

Figure 1. Geographic patterns of pandemic onset timings in studied locations in the 48 contiguous US states, autumn 2009. Upper
panel: The map shows how the available influenza-like-illness (ILI) data are spatially stratified by 449 locations according to postal sectional center
facility (SCF). The areas of the circles are proportional to population size. Locations in red are included in the analysis below, while those in black are
excluded either due to small population size, or low reporting of ILI cases during 2009. See methods for neighbour network construction. Lower
panel: Map of estimated timing of fall pandemic onset for the 271 locations with sufficient sampling for use in subsequent statistical and modelling
analyses. These locations span 90% of the US population. There is a clear spatial spread visible for much of the US, with influenza pandemic onset
earliest for the South Eastern states, and latest in the North East. Some places do not fit this overall pattern, and the distribution of timings on the
west coast is more complex. The inset plot shows the proportion ILI during the fall wave of 2009 for the whole of the US aggregated (black), Atlanta
(Yellow) and Boston (Blue): the aggregated ILI curve masks the relative sharp upswing in cases for individual locations as the pandemic onset timing
differs considerably between locations.
doi:10.1371/journal.pcbi.1003635.g001
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measured by indicators of the intensity of the spring 2009

pandemic wave) and absolute humidity. We evaluate every

possible combination of these factors to explain pandemic onset

dates using the corrected Akaike information criteria.

Figure 3 shows the relative importance of each factor and their

interactions. Irrespective of the spatial kernel used, introducing

terms for schools and/or spatial spread results in a significant

improvement of fit over models exclusively considering external

seeding. Models including spatial spread alone result in better fit

than models purely driven by schools terms. For both the gravity

and Gaussian models, the normalisation described above consis-

tently improves the fit, whereas it is less important for the grid

models. Of the spatial kernels tested, the gravity model offers the

best fit (AICc more than 30 lower than other kernels, see Table

S1). In line with a strong distance effect evidenced in the

correlation analysis, the distance exponent of the best-fit gravity

model was high (2.6, See Table S2) while the population size

exponent was low (0.27).

Overall, the best model includes terms for spatial transmission,

the effect of schools on spatial transmission, and a baseline external

seeding rate (see Table 2). The external seeding rate was small but

not zero (Table S2), and only appears to have played any

significant role in a small number of locations (Figure S1). Neither

absolute humidity nor prior exposure to influenza during the

spring wave were part of the best model. Taken together, these

results support a scenario where autumn pandemic onset is

determined by a local mode of spatial spread, which is density-

independent and enhanced by schools being in session.

One-step ahead predictions (Figure S2) and full simulations

(Figure S3) confirmed that the best model could broadly reproduce

the observed spatial dynamics of autumn pandemic wave onsets.

However the model predicts later onsets than those observed in

California’s Central Valley, again suggesting multiple seeding

events (Figure S1). Simulating the effect of setting schools to be

permanently closed, the general spatial structure of the wave was

similar to observed, but spread was substantially slower (Figure

S3).

Discussion

To our knowledge, this is the most detailed analysis to date of

the local and regional dynamics of influenza pandemic spread,

made possible by the availability of rich electronic disease datasets

maintained in the private sector. Our analysis shows that the

spread of the A/H1N1pdm09 pandemic during autumn 2009 in

the US was highly spatially structured, with a clear wave

originating in the South Eastern region of the country and slowly

spreading outwards over a 3-month period. Variation in school

openings alone cannot explain the observed fine grain variations in

pandemic onset across the US, but school opening does exert a

significant effect on the spread of the pandemic, consistent with

past research [15,25,26,33]

It is remarkable that the main 2009 pandemic wave, set in an

era of intense air traffic and regional ground transportation,

showed such a short-range mode of spread – so local that observed

outbreak patterns conflicted with the usual model of rapid

transmission between distant major cities followed by spread to

less populated areas [3,10,20]. This intriguing picture of mainly

local spread could be due to a combination of two factors: the

relatively low transmissibility of the 2009 A/H1N1pdm09 virus

[34] and the importance of children in pandemic spread [35]. In

turn, both of these factors could be consequences of a strong build-

up of anti H1N1pdm09 immunity in older cohorts due to earlier

exposure to related viruses [25,36]. The global transportation

network likely played a significant role in the initial spread of the

pandemic virus in spring 2009 [37,38,39].

Analysis of long-term mortality data indicates that the regional

spread of seasonal influenza is driven by longer-range commuter-

driven movements of adults with strong dependence on population

sizes of recipient and donor locations [3]. Previous models of

pandemic spread make similar assumptions [10,20]; however, our

analysis of detailed local morbidity data suggest that the travel

patterns of school-age children may be a major factor explaining the

spread of the 2009 autumn pandemic wave in the US. While

intuitively one might expect that movements of children are

Table 1. Partial correlations of putative factors affecting the onset of influenza autumn 2009 pandemic wave in 176 Eastern US
locations.

Geographic Distance Network Distance School Opening Absolute Humidity Anomalous Humidity

Geographic Distance - 0.04 (p = 0.30) 0.48 p,1024 0.47 p,1024 0.90 p,1024

Network Distance 0.09 (p = 0.12) - 0.49 p,1024 0.49 p,1024 0.91 p,1024

School Opening 0.16 (p = 0.02) 0.15 (p = 0.03) - 0.51 p,1024 0.78 p,1024

Absolute Humidity 20.27 p,1024 20.26 p,1023 20.57 p,1024 - 20.85 p,1024

Anomalous Humidity 0.04 (p = 0.30) 0.08 (p = 0.15) 0.16 (p = 0.02) 0.48 p,1024 -

Each of the five variables in the first row (geographic distance, network distance, school opening time, absolute humidity, humidity anomalies), residuals are computed
from linear regression with the onset of influenza timings for locations in the East of the US. This table gives the correlation between these residuals and a second
variable, listed in the first column.
For the residuals from regression with geographic or network distance (first two columns), weak correlation is found with absolute humidity (p,1024) and schools
(p = 0.02). For the residuals from school openings and both humidity measures (last three columns), any of the other variables give a significant correlation (p = 0.02 for
one combination and p,1024 for the other 11).
doi:10.1371/journal.pcbi.1003635.t001

Figure 2. Univariate correlations between autumn 2009 pandemic onset timings and potentially contributing factors. The influenza
onset timings are on the vertical axes for all four plots, and red points are locations in HHS regions 1–5 (East) and black in regions 6–10 (West). These
are correlated either as East only (in red) or all US (in black) against four different candidate explanatory variables: (a) Distance from the earliest
location in Alabama as measured by great circle geographic distance, (b) distance measured as minimum number of steps on the neighbour network,
(c) the timing of fall school openings for the state and (d) absolute humidity and (e) humidity anomalies in the 7–10 days prior pandemic onset. See
methods for details. Correlation coefficients and significance are inset in each plot. All of these correlations are highly significant (p,1024).
doi:10.1371/journal.pcbi.1003635.g002
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typically shorter-range and revolve around home and school,

limited information exists on contact rates in this age group. The

2009 experience underlines the urgency for improved understand-

ing of the dynamics of epidemiologically-relevant spatial and social

mixing in children.

The relatively modest transmissibility of the A/H1N1pdm09

virus, with an effective reproduction ratio estimated at around 1.5

[34], might also explain why long range travel was a lesser

determinant of the spread of the pandemic. With a low

reproduction ratio, occasional long-range imports of infection

may die out after a small number of generations of transmission,

and hence simply fail to ‘‘take’’. In contrast, a large outbreak in a

proximate community will result in repeated infection challenges,

and inevitably a successful chain of infection will commence.

Intriguingly, the effective reproduction number of seasonal

influenza is typically lower than that of the A/H1N1pdm09 virus,

and hence we would expect an even more localized and slower

spread for seasonal outbreaks than for the autumn 2009 pandemic.

Unfortunately, no epidemiological data at a comparable level of

spatial detail is available for comparison. Further, as hypothesized

in earlier work, the transmission patterns of seasonal influenza

epidemics may not be predictive of pandemic patterns, due to

Figure 3. Parsimony of model fits to the autumn 2009 pandemic onset timings – corrected Akaike information criteria (AICc)
histograms for all models. Left panels: AICc per categories (EXT: External seeding; AH: Absolute Humidity; SCH: Schools; SP: Space). Each vertical
line represents one possible model. Right panels: AICc for models containing parameters related to space (SP) segregated regarding the assumption
made on density dependence in connectivity between SCFs.
doi:10.1371/journal.pcbi.1003635.g003
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differences in outbreak timing and age distribution of infection

[35,40,41,42]. Understanding the relative contribution of virus

transmissibility, seasonality, and mean age at infection on the

spatial dynamics of influenza is an interesting area for future work.

Another surprising feature of the 2009 autumn pandemic wave

was the late arrival in large northeastern cities – regardless of

whether these cities had experienced an early summer wave. For

instance, the five boroughs of New York City suffered a major

spring pandemic outbreak and were particularly late in experi-

encing an autumn outbreak, in contrast to the less densely

populated cities upstate. This implies that chains of influenza

transmission from the spring wave did not persist over the summer

in most places, consistent with phylogeographic analysis of A/

H1N1pdm09 viruses suggesting reintroduction of a single domi-

nant viral lineage in the autumn in the US [24]. This phylogenetic

pattern is not repeated in all countries, for example in Scotland

[43], and synthesising the evolutionary and epidemiological

observations for influenza spatial transmission is proving chal-

lenging [44]. It would therefore be interesting to test whether other

countries also experienced slow and localized pandemic transmis-

sion and how that correlates with the corresponding observed

evolutionary patterns.

Although our study is the first to investigate influenza spread at

such a high level of spatial resolution and over such a broad

geographic area, our findings may be compared with those of an

earlier study of the 1918 pandemic in the US, England and Wales

by Eggo et al. [5], made using a similar modelling framework.

Interestingly, both studies suggest that transmission should be

normalised by a weighted sum of all populations, meaning that

transmission is nearly density-independent. However the fitted

spatial kernels differ between the studies: in the study of the 1918

datasets [5] spatial transmission scales approximately as distance to

the power 21, whereas in this 2009 study the distance exponent is

around 22.6, implying much sharper localised transmission.

Differences in spatial resolution of the data available and

transmissibility of the 1918 and 2009 pandemic virus may explain

these conflicting results. Clearly, more high resolution analyses of

influenza disease spread are needed, in a variety of geographic

settings, before the spatial transmission of pandemic influenza can

be accurately predicted.

Several caveats are worth noting in our study. Here we have

developed time series data of influenza-like illness coded by

physicians (as a proxy of H1N1pdm09 activity), but these patients

were not generally laboratory-confirmed. The contribution of other

respiratory pathogens to influenza-like illness diagnoses is likely

small in all age groups given the unusual timing of the pandemic

outbreak during autumn when other important respiratory viruses –

especially respiratory syncytial virus – are typically not epidemic.

Further, because of its unusual timing, the onset of the pandemic

was relatively easy to identify at a fine spatial and temporal

resolution, given low background of respiratory diagnoses.

Our analysis was limited to the 2009 pandemic autumn wave

period, and it would be interesting to model the spread of seasonal

influenza epidemics at the scale studied here, although outbreak

onset dates would be more difficult to identify. Additionally, we

did not explore the spatial patterning of the 2009 spring wave,

because its presence in the US was much more sporadic than the

autumn wave and onset dates could be obscured by changes in

health-seeking behaviour as people become aware of the new

pandemic. Further, even though the 271 locations in our study

represent 90% of the US population, we had to exclude cities with

less than 200,000 inhabitants due to demographic noise. Most of

these cities are located in the central US, a less well-connected and

potentially interesting region that was not considered here. In
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addition, we used school term data at the state level [15], rather

than at the county or city-level, given that detailed school data are

not publicly available in most states. Further, our models do not

integrate any age information, although analysis of age-stratified

disease incidence time series revealed very similar patterns of

pandemic onsets in the 271 US locations (not shown). Finally, we

did not consider radiation models of spatial flux [11]: these are

unlikely to add significantly to the present analysis as the picture of

sequential outbreak onset is so clear already, and a normalisation

factor has been included in the gravity formulation to account for

the varying population density across the US. However it would be

interesting to test the relative performance of radiation and gravity

models on a finer grained influenza data set, particularly if a

matching resolution of school data were available.

Overall, our results are robust: they do not depend on the exact

formulation of the spatial model nor the definition of epidemiologic

indicators. Our conclusions highlight the role of local transmission

in the spread of the major autumn 2009 pandemic wave. This work

highlights the importance of testing model predictions against

detailed empirical disease data and suggests that fine-scale

transmission models should take these results into account for

simulation of future pandemic outbreaks. As ever, a synthesis of

models, demographic, viral sequence data, environmental and

movement data with multiple incidence data sets collected by

different means would offer a particularly powerful way forward to

understand infectious disease dynamics and improve preparedness

for outbreaks of novel respiratory pathogens.

Methods

Data source
Weekly time series of outpatient visits for influenza-like-illness

and total visits were compiled from the visit-level database of

CMS-1500 medical claims data maintained by IMS Health, which

captures a convenience sample of about half of all physician visits

in the US. We first developed and employed a case definition of

influenza-like illness (ILI) as any mention of a diagnostic code for

influenza (ICD487x-488x) OR [fever and (sore throat or cough),

(ICD780.6 and (462 or 786.2)] OR febrile viral illness

(ICD079.99). Most of the cases were coded as ICD9 = 079.99

rather than the influenza specific code 487–488 – which probably

reflects that only few doctor’s offices utilized rapid testing for

H1N1pdm09 influenza, on advice from the CDC and WHO to

allow the laboratories to focus supplies and effort on severe cases

only [45].

We extracted the weekly number of visits that met the ILI

definition and also total number of all visits, stratified by 3-digit zip

code of the physician’s office. The IMS database covered 906

three-digit zip codes in the continental US during the 2009

pandemic period. The resulting syndromic case definition was

validated against CDC’s ILI surveillance system at the national

and HHS regional level for seasonal and pandemic seasons;

furthermore the ILI time series displayed known geographical

heterogeneities, in particular large early summer waves in

Northern cities like New York City but an absence of such

patterns in upstate New York and the South [46].

Standardization of ILI data
The three-digit zip codes were aggregated according to 449

‘‘sectional center facility’’ (SCF) as defined by the United States

Postal Service, to make geographically meaningful population

divisions. The case definition was sensitive enough to yield a large

number of weekly cases in most SCFs year-round; however both

coverage and reporting rate may vary by location and time. To

generate stable time series, we used the ratio of ILI to total number

of visits. We restricted the analysis to the continental US, to SCFs

with populations of more than 200,000, and to SCFs with more

than 250 ILI cases reported in 2009. This reduced the total

number of SCFs available for analysis to 271 but still accounted for

over 90% of the US population. These SCF are shown in Figure 1

(top panel), and we refer to these as ‘‘locations’’ in the main text.

Geographic data
Population numbers were determined from US Census 2000

data and zip codes weighted by population size to determine SCF

centres. The eastern US was defined as HHS regions 1–5 [47].

The neighbour network (also called ‘grid model’) was constructed

by joining each location to its four nearest neighbours and

allowing all links to be reciprocal. The median school opening date

was used for each state, and methods for collecting these data are

given in Chao et al. 2010 [15]. The absolute humidity data were

daily 2 m above-ground specific humidity conditions compiled

from the North America Land Data Assimilation System (NLDAS)

project, 1999–2009 [48]. For each SCF, we calculated the AH

values and AH anomalies in days 7–10 prior pandemic onset,

where daily AH anomalies are defined as observed AH minus

average AH for the same day of the year during 1999–2008.

Definition of influenza pandemic onset
Weeks of national ‘‘low ILI activity’’ between 2001–2009 for

aggregated US are defined as when the ILI ratio is below 0.6%,

and a sinusoid is fitted to these weeks to determine the phase

(similar to methods used for mortality data [29,30]). Using this

phase and the same set of weeks, amplitude plus a quartic function

of time is fitted to the ILI ratio for each SCF to give an

approximate seasonal baseline. As the pandemic does not

necessarily respect the usual annual timing of influenza, we define

a conservative pandemic threshold as the maximum of the

sinusoidal model baseline during 2009 plus a small additional

buffer (0.2%). Using absolute numbers for 2009, a binomial test

(with exact probabilities) is used to determine if the observed

number of visits is significantly (p,0.01) above threshold in each

week. If there are at least three consecutive weeks that are

significantly above threshold, then the first such week is considered

to be the week of pandemic onset. To interpolate to a slightly

greater degree of resolution, we estimate the number of ILI visits

and total visits in the half week before onset using the geometric

mean, and the binomial test is again used to determine if the fall

wave start time should be moved back by half a week. For the fall

wave of 2009, the calculated pandemic onset timings will not be

sensitive to these methods of calculation as the epidemic upswing

in each location is so sharply defined.

Transmission model
We use a maximum likelihood approach based on a simple

mechanistic model. Following Eggo et al. [5], the probability that

the fall wave starts at time T for a given location (indexed by i) is

given by

Pi(T)~(1{e{li (T)) P
T{1

t~1
e{li (t)

where li(t) is the force of infection at location i at time t. For the

gravity model, this force of infection is given by
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where the following are explanatory variables: di,j is the great

circle distance between locations i and j, and for each location i:hi

is the absolute humidity, xi is the intensity of the spring wave

(percentage of total pandemic excess ILI cases that were reported

during the spring), Ni is the population size normalised by average

population size, Ii is an indicator function of time which is 1 when

schools are open and 0 otherwise. L is the set of indices of

currently infected locations.

The estimated parameters are as follows: w and v are the effects

of the spring wave and humidity in modulating the full transmission

rate. The b parameters are all transmission rate factors: b0 is for the

background rate of infection (including external seeding from

domestic and international locations and local chains of transmis-

sion surviving over summer), bs is a boost due to schools being in, bd

is the spatial transmission coefficient and bds is the boost to spatial

transmission due to schools being in. a, m and u are all exponents on

population size, representing the effect of population size on the

background rate of infection, for recipient population and donor

population in spatial transmission respectively. The distance

exponent in the spatial kernel of the gravity model is c. For the

spatial transmission, the numerator of the fraction is the sum over

infected locations (weighted by distance and population size to some

powers), and the denominator is the same sum but over all locations.

The denominator is to the power e: so 0 corresponds to no

normalisation (fully density-dependent), and 1 corresponds to full

normalisation (fully density-independent).

For the Gaussian model, the expression is the same except for

the form of dependence on distance and the parameter s gives the

distance scaling in the Gaussian (and c is no longer used):

li(t)~hi
wevxi b0Na

i zbsIiz(bdzbdsIi)N
m
i

P
j[L

Nn
j e

{d2
i,j
=s2

P
j=i

Nn
j e

{d2
i,j
=s2

" #e

0
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1
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The grid model is slightly different as instead of explicit

dependence on geographic distance, we use the set of locations one

step (n1,i) or two steps (n2,i) away for location i, as defined by the

constructed grid:

li(t)~

h
Q
i evxi b0Na

i zbsIiz(bd1zbd1sIi)N
m
i

P
j[(L\n1,i )

Nn
j

P
j[n1,i

Nn
j

" #e z(bd2zbd2sIi)N
m
i

P
j[(L\n2,i )

Nn
j

P
j[n2,i

Nn
j

" #e

0
BBBBB@

1
CCCCCA

There is no distance parameter, but now the spatial transmis-

sion parameters have been extended from two to four to account

for transmission to locations one and two steps away: bd2, bd1s, bd2

and bd2s.

Simpler models can be made from all these spatial kernels by

‘‘turning off’ combinations of parameters, i.e. setting them to zero.

This makes 400 gravity, 400 Gaussian and 1936 grid models. For

each of the 2736 models, likelihood was maximised using the

Nelder-Mean simplex algorithm as implemented in the GNU

scientific library in C. Simulations were done in C using the ranlux

algorithm of Lüscher with maximum luxury level as provided by

the GSL library. Convergence was assessed by likelihood profiles

(Figure S4).

Supporting Information

Figure S1 Analysis of contribution of external seeding
by location. Upper panel: The percentage contribution of

external seeding to the model force of infection was calculation

for each location at the observed date of pandemic onset. For 253

out of 271 locations the external seeding accounted for less than

5% of the force of infection, indeed in 177 it accounted for less

than 1% of the force of infection. On the map, locations with 5–

10% external contribution are marked in yellow (five locations),

10–50% in orange (seven locations, and all less than 25%), and

those over 50% in red. Lower panel: Plots correspond to

individual locations: the black curve gives the standardized ILI (y-

axis) against date (x-axis) for the calendar year 2009, the grey

curve and shaded area give the pandemic onset threshold, and

the blue line marks the calculated autumn pandemic onset date

(see methods for full details). The plot labels give the location

name an in brackets the percentage of force of infection at week

of onset that is contributed by external seeding. The first row

gives three representative plots (Atlanta GA, Boston MA and

Trenton NJ). In each case, the contribution to force of infection

at week of onset was less than 5%, and it can be seen that the

week of onset can be identified unambiguously. The second row

shows three of the six places where external contribution at week

of onset was over 50%, but date of onset is not clearly identified.

St. Petersburg FL, the standardized ILI dips below threshold

again after onset is detected. For Corpus Christi TX there is also

a dip after onset, though it does not drop below threshold. For

Grand Island NE, there is also a dip after onset, and the general

rise of ILI is not as sharp as other locations. If week of onset for a

location is misidentified as earlier than other locations nearby,

then the apparent dominant contribution of external seeding

would be artefactual: we cannot exclude this for these three

locations. The third row shows the remaining three places where

external contributions was over 50%. In each of these, the week

of onset is clearly defined. Visually from the supplementary

movie, both Dothan AL and Stockton CA appear to be at or near

the source of clear regional waves, so these are likely to

correspond to true external seeding events. The final location,

Baltimore MD, does not appear to be the origin of separate

regional wave, and the apparent high contribution of external

seeding can be explained as an artefact: there is another location

very close by (Linthicum MD). The power-law dependence on

distance in the transmission model and the normalisation mean

that essentially these two locations only ‘‘see’’ each other. It

happens that Baltimore onset is a week before Linthicum, so this

appears as having a strong component of external contribution to

the force of infection. This highlights a potential weakness of

gravity normalisation methods, but could be overcome by

modifications such as merging locations that are close together,

or by capping the power-law dependence on distance within a

certain range. In this model, the external seeding term

ameliorates the difficulty. In summary: the evidence here suggests

only two likely external seeding events: near Dothan AL and near

Stockton CA.

(PDF)
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Figure S2 Comparison of most parsimonious models to
observed onset timings of the autumn 2009 pandemic. A:

Conditional probability of epidemic onset, model prediction and

residual analysis for the most parsimonious model per category. For

each location (sorted by increasing time of onset) probabilities of

epidemic onset conditional on the previous disease dynamic are

represented in grey scale with mode in brown and model prediction

(average) in orange. Residuals are computed as the difference

between the model prediction (brown) and the data (red) and

reported on the maps. Titles indicate parameters defining these

models. Models discarding local spatial transmission are unable to

reproduce the qualitative patterns of spread (upper panels). The

inclusion of local spatial spread with or without school opening

means the model broadly tracks the spatial progression of pandemic

onsets (lower panels). The best-fit model is able to reproduce the

general spread pattern of the autumn 2009 pandemic wave

originating from the South Eastern US, but the residuals are

geographically clustered, particularly in California and Florida.

Most notably, the model predicts later onsets than those observed in

California’s Central Valley and earlier onsets than observed in

Florida. B: While the spatial model with and without schools give

broadly similar visual results, there is a significant improvement in

model fit (see Table 2), and here this difference is investigated by

location. For each location (x-axis and map) difference of log

likelihood (conditional on the previous disease dynamic) between

the model with and without schools are reported.

(PDF)

Figure S3 Predictions from the most parsimonious
model on the effect of school closure on pandemic onset
timings of the autumn 2009 pandemic in the US. 1000

realisations were started without any locations infected. The full

model (black lines) was simulated using maximum likelihood

parameters of the most parsimonious model (see table 2). The

simulations without school opening (grey lines) uses the same

parameters, but schools were set as closed. The general spatial

structure of the wave is similar to observed or simulated with the

correct school opening times, but the spread was substantially

slower. However, the exact length of the delay was sensitive to the

fitted parameters. In the lower graphs, the spatial transmission

parameter (bd) was fixed, other parameters refitted and the above

simulations repeated. The 95% confidence intervals are indicated

by black dashed lines and the maximum likelihood estimate by

orange lines. The lower left plot shows the distribution of the time

when 50% of the locations were infected (T50). The simulated

times with schools (black boxes) was not sensitive to the fixed

parameter, but the extra delay with schools closed (grey boxes) was

highly variable over the confidence interval. The lower right graph

shows how the transmission parameters are interdependent, which

explains the sensitivity in simulation. In summary: the extent of the

epidemic slowing from closing schools is difficult to estimate

accurately from this model, but is likely to be substantial.

(PDF)

Figure S4 The profile likelihoods for the parameters in
the most parsimonious model. For the transmission rate

parameters (top row), logged parameter values are used, while the

exponents (bottom row) are given unlogged. The orange line

marks the maximum likelihood, and the dotted lines give the range

for a drop of 1.92 in the log likelihood, corresponding to a 95%

confidence interval.

(PDF)

Table S1 Most parsimonious model per category
including different spatial kernels. An extension of

Table 2 from the main text: this table gives the log likelihood

and AICc for the maximum likelihood fits to the most

parsimonious models in each category. Here, additional results

are given for the alternative spatial kernels (Gaussian, or using grid

distance). For each model category, the most parsimonious model

is specified by the parameters that are non-zero, which are given in

the final column. In all cases, the gravity model has much

lower AICc than the Gaussian or the grid models. Despite the

crudeness of the spatial grid, the grid model performs surprisingly

well.

(PDF)

Table S2 Fitted parameters for the most parsimonious
model. The most parsimonious model has six non-zero

parameters. These are given in the table together with their

maximum likelihood values and confidence intervals, as deter-

mined by a drop of 1.96 in the profile likelihoods. Setting the other

parameters to zero, the force of infection for location i can be

written as: li(t)~b0z(bdzbdsIi)N
m
i

P
j[L

d
{c
i,j

P
j=i

d
{c
i,j

� �e. This force of

infection is a rate and the units correspond to the time step

Dt = half week.

(PDF)

Movie S1 Influenza-like-illness in the US from January
2009 to April 2010. The area of the disc on each location is

proportional to the population size and the colour represents the

standardised ILI (see methods for details). The lower panel shows

standardised ILI for the aggregate of all locations.

(MOV)
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