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Influenza recurs seasonally in temperate regions of the world;
however, our ability to predict the timing, duration, and magnitude
of local seasonal outbreaks of influenza remains limited. Here we
develop a framework for initializing real-time forecasts of seasonal
influenza outbreaks, using a data assimilation technique commonly
applied in numerical weather prediction. The availability of real-
time, web-based estimates of local influenza infection rates makes
this type of quantitative forecasting possible. Retrospective ensem-
ble forecasts are generated on a weekly basis following assimilation
of theseweb-based estimates for the 2003–2008 influenza seasons in
New York City. The findings indicate that real-time skillful predic-
tions of peak timing can be made more than 7 wk in advance of
the actual peak. In addition, confidence in those predictions can be
inferred from the spread of the forecast ensemble. This work repre-
sents an initial step in the development of a statistically rigorous
system for real-time forecast of seasonal influenza.

Kalman filter | absolute humidity

Worldwide, influenza produces 3–5 million severe illnesses
annually and kills an estimated 250,000–500,000 people

(1). In temperate regions, influenza characteristically recurs
during winter when absolute humidity levels are low (2, 3), but at
present our ability to predict important details of these seasonal
influenza outbreaks is limited. Indeed, much public health ben-
efit could be gleaned from early, skillful prediction of the onset,
peak, duration, and magnitude of local influenza outbreaks.
Mathematical models of infectious disease transmission have

been in use for over a century (4). These models have been de-
veloped to study the dynamic properties of disease transmission
(5–7), determine the biological characteristics of specific patho-
gens (8, 9), and analyze historical transmission behavior during
documented outbreak events (10).
More recently, infectious disease model simulations have been

performed retrospectively in conjunction with statistical filtering
methods to provide maximum-likelihood parameter estimation
(11, 12) and improved epidemic simulation through time and
physical space (13–16). Filtering techniques iteratively update, or
adjust, model simulation estimates of the dynamic state, e.g.,
population infection rates, using real-world observations of that
state, as the model is integrated through time. Because the state is
only intermittently, or partially, observed—i.e., infections may be
observed only for some locations and times, and some state var-
iables, such as population susceptibility rates, may not be observed
at all—and because these partial observations themselves contain
error, the filter endeavors to balance the relative information
contained in the observations and the model simulation. At the
same time, the filtering process can also be used to estimate ep-
idemiologically significant parameters within a model.
These same filtering techniques, by constraining themodel state

and parameters, can potentially be used to enhance the ability of
a model to skillfully forecast disease transmission. Heretofore,
such attempts at prediction have been applied in a very limited
fashion without thorough evaluation of the skill, or uncertainty, of
the forecast (17–19).
In theory, infectious disease predictions could be developed,

validated, and produced in a fashion similar to that of the forecasts
generated for numerical weather prediction (NWP) (20). Much
like weather dynamics, infectious disease dynamics are nonlinear

and intrinsically chaotic. These characteristics make the evolution
of these purely deterministic systems highly sensitive to their
current conditions, such that very small differences in the current
state can rapidly amplify through time to divergent future out-
comes (21, 22). Similarly, for mathematical models representing
these nonlinear systems, errors in the estimate of the initial dy-
namic state of the system grow as these models are integrated into
the future. This error growth degrades the accuracy of a forecast
the farther into the future it is extended and imposes a formal limit
on predictability (23). Such initial error growth is additionally
exacerbated by the use of imperfect, simplified model repre-
sentations of the true system. Together, the nonlinearity of the
modeled system and the shortcomings of the model representa-
tion lead to a degradation of prediction quality the farther forward
in time one forecasts.
To counter this error growth, NWP uses data assimilation tech-

niques, such as filtering, to repeatedly reinitialize dynamic weather
models, using the latest available observations and knowledge of
the error associated with those observations. In NWP this reiniti-
alization or assimilation is performed frequently (e.g., every 6 h)
and the newly initialized model is then integrated forward in time
(e.g., 7 d) to create a new set of weather forecasts. Metrics for eval-
uating the real-time skill of these model–data assimilation system
forecasts have been developed to validate these predictions.
To realize such a model–data assimilation prediction system for

infectious disease, real-time or near real-time observations of pop-
ulation-level disease status must be available. For influenza, near
real-time online-search query estimates of influenza infection rates
have recently been developed and validated historically against US
Centers for Disease Control and Prevention (CDC) official esti-
mates of influenza-like illness (ILI) (24). At the time of this writing,
these Google Flu Trends (GFT) data were available for 28 coun-
tries, as well as by district, province, state, or municipality within
these countries. These near real-time population-level data make
application of model–data assimilation prediction practicable.
Here we apply a data assimilation method called the ensemble

adjustment Kalman filter (EAKF) (20) to entrain weekly GFT
estimates of ILI (24, 25) into a simple humidity-forced susceptible–
infectious–recovered–susceptible (SIRS) mathematical model of
influenza (3). The EAKF is a recursive filtering technique that
combines observations with a temporally evolving ensemble of
model simulations to generate a posterior estimate of the model
state (20). This process nudges the ensemble mean toward the
observations and simultaneously contracts the ensemble variance,
thus constraining the model state and parameters.

Results
Before using the GFT estimates we first validated the function-
ality of the combined SIRS-EAKF framework, using a synthetic,
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model-generated record. This preliminary validation of the
combined SIRS-EAKF framework with a wholly known synthetic
record was performed to determine whether the EAKF appro-
priately constrains the SIRS model state and parameters.
To conduct the validation, a single run of the humidity-driven

SIRS model was initiated with prescribed parameters and initial
conditions and integrated from October 1, 1972 into the spring of
1973, using daily absolute humidity (AH) conditions for NewYork
state. This simulation produced a January outbreak of influenza
(Fig. 1A), which we defined as the “true” outbreak. Prescribed
observational error was then added to this truth to create a syn-
thetic, error-laden observational record of influenza infection to
be assimilated in the combined SIRS-EAKF framework.
For this first assimilation, an ensemble of 100 simulations was

initiated, each with randomly chosen parameters and initial con-
ditions, and integrated through time using the same daily AH
record for New York state used to generate the synthetic truth.
The synthetic observations were then iteratively assimilated using
the EAKF as the model moved forward in time. Ensemble pos-
terior mean estimates of the true state and parameters were well
constrained by the combined SIRS-EAKF framework (Fig. 1A).
The observed state variable, I, the number of infected persons,

is well captured in the mean by the combined SIRS-EAKF
framework. The nonobserved state variable, S, the number of
susceptible persons, is also well captured, such that before the
cessation of the outbreak, there is little bias between the ensemble
mean and the truth. Through time the variance of the 100-
member ensemble decreases continuously for S (Fig. 1B). For I,
error growth and ensemble spread occur before the outbreak as
individual ensemble members engender premature outbreaks,
only to be constrained by the observations. During the outbreak, I
undergoes more intense error growth as outbreaks are then sup-
ported by the observations.
Epidemiologically significant parameters within the SIRS

model, including the mean infection period, D, and R0max, which
sets an upper bound on the transmissibility of the virus, are also
constrained by the EAKF. By the end of the true outbreak, the
ensemble mean estimates of these parameters are close to the
true values used to generate the synthetic observations.
For comparison with the EAKF approach, we alternatively

tested a particle filter method, using the same SIRS model and
synthetic observations (SI Methods). Unlike the EAKF, particle

filters make no assumptions on the linearity underlying the model
or the mapping from state to observational space. However,
particle filter methods are prone to particle degeneracy, which can
lead to model divergence and poor state estimation (26, 27). The
particle filter method tested performed reasonably well; however,
the EAKF method provided better and more computationally
efficient estimates of the unobserved state, S, and parameters
(Fig. S1). This better performance may stem from the fact that the
EAKF approachmaintains greater spread during the preoutbreak
period, which may enable better state and parameter estimation
once the outbreak commences.
We have also elected to present the EAKF as themethod of data

assimilation because the EAKF can be readily applied to higher-
dimensional systems, unlike particle filter methods (28). Whereas
the current system is only dimension 6 (two state variables and
four parameters), we anticipate use of higher-dimensional in-
fluenza model systems that include multiple strains, age stratifica-
tion, and geographic structure in the future.
Additional simulations were performed to gauge the sensitivity

of the combined SIRS-EAKF framework to changes of the en-
semble size, the random sampling of initial ensemble member
states, the frequency of observations (e.g., every second day,
weekly, etc.), and the prescribed error variance used to generate
the synthetic observations from the truth (Figs. S2–S4). These
sensitivity tests indicated that the SIRS-EAKF framework pro-
vides a robust estimate of the truth provided the ensemble is of
sufficient size (100 or more members), the observations are
available with sufficient frequency (at least every 10 d), and the
observational error variance is not too large.
We next applied the combined SIRS-EAKF framework to

perform retrospective simulation of influenza infection in New
York City during the 2004–2005 and 2007–2008 seasons, using
GFT weekly estimates of ILI (Figs. S5–S7). A small level of mul-
tiplicative inflation was included in these simulations to avoid filter
divergence (29, 30) and better replicate the GFT observations (SI
Methods). This need for inflation, which is commonly used during
data assimilation, in part stems from the fact that the GFT
observations reflect real-world transmission dynamics, which in-
clude structures and processes, such as spatial heterogeneity and
preferential mixing, that are not represented in the SIRS model
and contribute to model error.

Fig. 1. Results for SIRS-EAKF schemeusingmodel-generated truth plus prescribedobservation error variance. (A) Time series of prior and posterior ensemblemean
and truth for the susceptible (S) and infected (I) states and themodel parametersD (mean infectious period) and R0max (a transmissibility parameter). Also shown for
the infected state are the synthetic observations (truth plus observation error). (B) Time series of prior and posterior ensemble variance for S, I, D, and R0max.
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Two hundred-member ensembles of the SIRS-EAKF frame-
work were run with observed daily AH for New York City as
forcing. Each ensemble member was initialized with a unique
sample of state variables and SIRS parameters in September
before the wintertime influenza season. The ensemble was then
integrated through time and GFT ILI observations were assimi-
lated using the EAKF to generate a posterior estimate of infection
rates. This process was repeated 250 times, each time with a dif-
ferent 200-member ensemble of initial parameter and state vari-
able combinations. With a small amount of inflation, the average
ensemble mean posterior estimates match the GFT weekly esti-
mates of ILI well (Fig. 2). The complicated outbreak structure
during the 2004–2005 influenza season, which includes three in-
dividual peaks, is represented by the SIRS-EAKF framework. The
model–data assimilation system also captures the long rise and
single peak of infection during 2007–2008.
A retrospective forecast for the 2007–2008 influenza season in

New York City was next generated. As in preceding simulations,
after the assimilation of a weekly GFT observation, the model
posterior was integrated forward 7 d to the next GFT observation;
however, in addition, the samemodel posterior was also integrated
forward 300 d without any further EAKF constraint, although with
perfect knowledge of the daily AH conditions. These second lon-
ger runs constitute retrospective forecasts; i.e., after assimilation of
a GFT ILI estimate in near-real time and consequent adjust-
ment of SIRS ensemble member parameters and state variables by

the EAKF process, the model is integrated into the future, using
those new parameters and the current state, to generate antici-
pated possible outbreak outcomes.
The SIRS-EAKF system can be evaluated for its predictive skill

for any number of outcomes, such as outbreak magnitude, dura-
tion, or onset. Here we choose to focus on one metric: the timing
of the peak of the outbreak—i.e., the week during the influenza
season in which the highest GFT ILI estimate is recorded (e.g.,
week 25, or the week ending February 17 for the 2007–2008 sea-
son). The retrospective forecasts indicate that model predictions
of influenza outbreak peak converge toward the observed peak in
the weeks before the actual event (Fig. 3 A and B). In fact, the
ensemble mode predicted peak is within 1 wk of being correct 5 wk
in advance of the observed peak. In addition, the spread of peak
predictions among the 200-member ensemble decreases as the
forecast nears the observed peak. This decrease in ensemble
spread can be seen in weekly histograms of predicted peak timing,
as well as in the ensemble variance of these same predictions.
The percentage of ensemble members predicting the peak

timing within ±1 wk increases dramatically beginning in week 18
as model spread decreases (Fig. 3 C and D). This relationship
indicates that, for a real-time prediction performed in the ab-
sence of knowledge of when the actual observed peak will occur,
a measure of confidence in the prediction can be made on the
basis of the ensemble spread. That is, decreased ensemble spread
will coincide with increased confidence in the prediction.

Fig. 2. Results for the SIRS-EAKF scheme using weekly GFT estimates of ILI for New York City during the 2004–2005 and 2007–2008 influenza seasons. Two
hundred fifty 200-member ensembles were run for each season, each with a different suite of initial conditions. Multiplicative inflation of λ = 1.02 is applied.
SIRS model simulations were forced with observed daily specific humidity conditions for New York City. (A) The 2004–2005 influenza season weekly GFT ILI
estimates (green) and SIRS-EAKF ensemble mean prior (blue) and ensemble mean posterior (red) of infected (I) averaged for all 250 ensembles. Also shown
are the 10th and 90th percentiles of the ensemble posterior I (black lines) averaged for all 250 ensembles. The range between the average 10th and 90th
percentiles is shaded gray. (B) Same as A but for the 2007–2008 influenza season.
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To further codify this finding and verify its generality across
a larger set of seasonal outbreaks, we next ran repeated retro-
spective ensemble forecasts for the 2003–2004 through 2008–2009
influenza seasons in New York City. These forecasts were run in
200-member ensembles, using two different approaches: (i) with
perfect knowledge of future daily AH conditions for only the first
5 d of the influenza forecast—these conditions would be locally
available from numerical weather forecasts—and daily climato-
logical AH conditions for the remaining 295 d of each forecast;
and (ii) with perfect knowledge of future daily AH conditions for
the first 5 d of the forecast followed by 295 d of AH climatology,
but with only the model infected state constrained by the EAKF,
i.e., the posterior parameters and other state variable are reset to
an initial distribution before commencing each forecast.
The first approach is how a real-time forecast could be run for

this SIRS-EAKF framework: with full use of the EAKF constraint
and only limited knowledge of future AH conditions. The differ-
ence between the outcomes of the first and second approaches
indicates the forecast improvement due to full EAKF constraint of
all variables and parameters.
The same relationship between the accuracy of the ensemble

mode predicted peak and the spread of the predictions within the
ensemble holds for these more numerous retrospective forecasts
(Fig. S8). A clearer picture of this predictive skill emerges when the
forecasts are grouped by how many weeks into the future the en-
semble mode peak is predicted (SI Methods). The two different
forecast approaches have comparable predictive skill when the
ensemble peak mode is predicted to be 1–3 wk in the future (Fig. 4
and Fig. S9); however, for ensemble peak modes forecast greater
than 3 wk in the future, only the first forecast form, which makes
full use of the EAKF state variable and parameter constraint,
has demonstrated skill (Fig. 4). The second forecast form, which
lacks full EAKF constraint, has no forecast skill for mode peak
predictions greater than 3wk; indeed, without full EAKFconstraint
mode peak predictions rarely occur more than 3 wk in the future.

Results from the first forecast form, which uses climatological
AH conditions and full EAKF constraint of model variables and
parameters, can now be used to explore how a real-time in-
fluenza forecast would be interpreted (Fig. 4, red lines). On the
basis of the ensemble spread and how many weeks in the future
the outbreak peak is predicted, confidence in a given prediction,
or, conversely, the forecast uncertainty, can be assigned on the
basis of the probabilities shown in Fig. 4. For instance, an en-
semble mode peak predicted for 7 wk in the future with a log-
transformed ensemble variance of 2.5 wk squared is expected to
be accurate within ±1 wk about 40% of the time.

Discussion
The results presented here demonstrate that weekly, local pre-
dictions of influenza risk, with estimates of forecast certainty, can
be made in real time. These forecasts can be performed using
GFT ILI data at municipal, state, and country levels and used to
help inform public health decisions including vaccine allocation
and antiviral drug distribution.
In the future, as more years of GFT ILI estimate data and

more locations are entrained into this analysis, a more robust
estimate of the relationship between predictions of peak timing
and ensemble variance will be developed. This will further codify
the relationships presented in Figs. 3 and 4 and improve pre-
diction skill. Forecasts can also be developed for other outcome
metrics, such as peak magnitude and outbreak duration. Pre-
dictions of large local maxima, rather than the one seasonal peak
we have used here, might also prove useful; such a metric may
improve prediction skill, as some years (e.g., 2005 in New York
City) have no distinct, substantive peak. Additional information,
such as influenza strain or school calendar, might also be used to
further optimize predictions.
Information on influenza strain may be particularly important.

The three peaks during 2004–2005 (Fig. 2A) stem principally from
differently timed outbreaks of three distinct influenza subtypes in

Fig. 3. Results for SIRS-EAKF retrospective forecasting using
GFT ILI estimates and observed AH conditions for the 2007–
2008 season in New York City. Retrospective assimilation be-
gan September 2, 2007, and the first forecast occurred after
assimilation of the week 1 GFT ILI estimate (representing
September 2–8, 2007). Inflation was set at λ = 1.02. (A–C)
Results for a single 200-member SIRS-EAKF run with prediction
for 300 d following each assimilation, using the new posterior
state and parameter values. (A) Histogram of ensemble fore-
cast peak timing for predictions initiated at the end of weeks
1, 4, 7, 10, 13, 16, 19, 22, 25, and 28 (blue). Also shown are the
observed peak (green, week 25) and the ensemble mode (red).
Note that the peak for any given ensemble member may occur
before the forecast week. (B) Time series of the ensemble
mean posterior and spread (blue), the mean prediction and
spread (gray), and the observations (green) for predictions
initiated at the end of weeks 1, 4, 7, 10, 13, 16, 19, 22, 25, and
28. (C) Time series of the ensemble predicted peak variance log
transformed (blue) and percentage of the 200-member en-
semble predicting the observed peak (week 25) within ±1 wk
(green). Note that for the forecast made the week after the
week 25 peak, the percentage of ensemble members accu-
rately predicting the peak drops as some ensemble members
erroneously forecast still more infections in the future; how-
ever, after 2 wk of continued decline in GFT observations the
forecasts “recognize” the abatement and no longer forecast
any future resurgence of infection. (D) Percentage of the 200-
member ensemble predicting the peak within ±1 wk of the
actual peak (week 25) for each weekly prediction (weeks 1–28)
for each of 250 SIRS-EAKF assimilation runs plotted as a func-
tion of the ensemble predicted peak variance log transformed.
Each of the two hundred fifty 200-member SIRS-EAKF assimilation runs was initiated with a different suite of initial state and parameter combinations. Color
coding denotes the week the prediction was made relative to the actual week 25 peak: 10 wk or more prior (blue), 7–9 wk prior (green), 4–6 wk prior (red),
1–3 wk prior (cyan), and on or after the peak (black).
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circulation that season. The SIRS model, as run here with only
one strain, is not equipped to produce separate parameter and
state estimates for each subtype, which would be a truer repre-
sentation of actual seasonal dynamics. A model that accounts for
and assimilates infection data by strain type would likely improve
prediction skill and uncertainty estimates for each strain and the
season as a whole; however, at present, such partitioned data are
not available in real time. Alternatively, a segregated analysis of
predictions from seasons with one predominant strain, vs. those
with more than one strain, might improve prediction and un-
certainty estimates for those single-strain seasons, simply by ag-
gregating those “cleaner” years.
In weather and climate, forecasts made with a suite of models

are generally more robust than forecasts made with any single
model (31, 32). This finding motivates the development and use of
additional model–data assimilation influenza forecast frameworks
to be used in conjunction with the approach presented here. Other
models might be spatially distributed, discrete, or age stratified or
include stochasticity. Alternate assimilation approaches should
also be tested further, including additional particle filtering
methods (18, 26, 27) or alternate ensemble Kalman filtering forms
(33, 34). Indeed, no one model or assimilation method need be
used to the exclusion of all others, and it is not our intention to
advocate exclusive use of either the SIRS model or the EAKF.
The general model–data assimilation framework presented

here is flexible and adaptive and could be used to develop pre-
dictions for other seasonally recurring respiratory diseases, such
as respiratory syncytial virus and rhinovirus, should real-time

estimates of these pathogens become available. The forecasts
developed here indicate that we will soon reach an era when
reliable forecasts of some infectious pathogens are as common-
place as weather predictions.

Methods
Description of the SIRS Model. The model used for this study is a perfectly
mixed, absolute humidity-driven SIRS construct. The form is similar to that of
the model described in Shaman et al. (3). The SIRS model equations are

dS
dt

=
N− S− I

L
−
βðtÞIS
N

− α [1]

dI
dt

=
βðtÞIS
N

−
I
D
+ α; [2]

where S is the number of susceptible people in the population, t is time in
years, N is the population size, I is the number of infectious people, N − S − I
is the number of resistant individuals, β(t) is the contact rate at time t, L is the
average duration of immunity, D is the mean infectious period, and α is the
rate of travel-related import of influenza virus into the model domain.
The basic reproductive number, which is the number of secondary infections
the average infectious person would produce in a fully susceptible pop-
ulation, at time t is related to the contact rate through the expression
R0ðtÞ = βðtÞD.

AHmodulates transmission rateswithin this model by alteringR0(t) through
an exponential relationship similar to how AH has been shown to affect both
influenza virus survival and transmission in laboratory experiments (2),

R0ðtÞ = expða×qðtÞ+bÞ+R0min; [3]

where a = −180, b= logðR0max −R0minÞ, R0max is the maximum daily basic
reproductive number, R0min is the minimum daily basic reproductive number,
and q(t) is the time-varying specific humidity, a measure of AH. The value of
a is estimated from the laboratory regression of influenza virus survival
upon AH (2).

This SIRS model, as run previously, reproduces both the observed 1972–
2002 seasonal cycle of excess pneumonia and influenza mortality within the
United States and the association between negative AH anomalies and
the onset of local influenza outbreaks (3). It is a strong starting point for the
proposed project because it has been validated against datasets of historical
influenza outbreaks, and its inclusion of environmental forcing (i.e., AH
conditions) may help the model better simulate outbreak dynamics.

For this study, the model was run continuously and without stochasticity.
That is, fractional persons were generated within model state classes, and
transitions between model states were calculated deterministically directly
from Eqs. 1 and 2. The complete temporal evolution of the SIRS model is
fully described by the model equations (Eqs. 1–3), initial conditions, and AH
boundary forcing. Simulations were performed with an influenza importa-
tion rate, α, of 0.1 infections per day (1 infection every 10 d). Only one in-
fluenza strain was simulated per season, and partial and cross-immunities
were not represented.

Further description of the model initialization and forcing for individual
SIRS-EAKF experiments is provided below.

Description of the EAKF. Generally, sequential ensemble filtering can be
viewed as the problem of estimating the probability of the system state at
a given time (Zt) conditional on observations (yt) taken up until and including
time t. In the case of the SIRS model described above, the state is composed
of the number of individuals in a population that are susceptible and in-
fectious at a given time and the set of independent model parameters; that
is, Zt = (St, It, R0max, R0min, L, D) and yt is a time series representing obser-
vations (e.g., the Google Flu Trends ILI estimates).

Bayes’ rule provides a target for the update of the system state given an
observation:

pðZt jyt ; yt−1; :::Þ ∝ pðyt jZtÞpðZt jyt−1; :::Þ: [4]

Here thefirst termonthe right-hand side is the likelihoodofobserving thedata
given the state and the second term is theprior distributionof the system state.
The updated distribution (the left-hand side of Eq. 4) is called the posterior.
Generally, Kalman filters fall into a class of filters that assumes normality of
both the likelihood and prior distributions during an update. This assumption
allows parameterization of these distributions in terms of the first two
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Fig. 4. Results for SIRS-EAKF retrospective forecasting using GFT ILI esti-
mates for the 2003–2004 through 2008–2009 seasons in New York City.
Retrospective assimilations began in either August or October. Two hundred
200-member SIRS-EAKF assimilations were performed for each season and
each of these start months, excepting 2003–2004 for which only October was
run as August 2003 GFT ILI estimates are unavailable. Inflation was set at λ =
1.02. Forecasts were run for 300 d following each assimilation, using the new
posterior state and parameter values. The forecasts are grouped using 0.25-
wk squared bins of ensemble predicted peak variance log transformed. The
proportions of ensemble mode predicted peak within each bin that are
within ±1 wk of the observed GFT ILI estimate for that season are plotted as
a function of the ensemble predicted peak variance log transformed. The
different subplots group the predictions by lead time; i.e., “4–6 wk in the
future” indicates the forecast mode, whether correct or not, was predicted
to be 4–6 wk in the future. The different color lines are for (i) the first
forecast form, 5 d of true AH conditions followed by daily 1979–2002 AH
climatology and full EAKF constraint (red); and (ii) the second forecast form,
AH as in the first form but no EAKF constraint of model parameters and the
susceptible variable (green).
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moments only (mean and covariance). However, in ensemble filtering, one
need never form the covariance of the prior or posterior; instead we have
a finite ensemble of states that are samples from these distributions. The
model mean and covariance are computed directly from the ensemble.

Knowledge of these prior moments, as well as observations and their error,
allows for the computation of the mean and covariance of the posterior. The
method of transforming the ensemble members of the prior into ensemble
members of the posterior is what distinguishes different types of ensemble
filters. The EAKF [see Anderson (20) for algorithmic details] adjusts the prior
ensemble members such that their new moments match the target moments
of the posterior predicted by Bayes’ theorem. The method is sequential in
that given samples from the posterior, the SIRS model can be used to in-
tegrate each ensemble member forward in time to the point at which new
observations become available. The update is then repeated.

In models that consist of multiple prognostic variables—in this instance,
the state variables S and I, as well as the model parameters—covariant
relationships between variables arise naturally from the dynamics of the
system. Mathematically rigorous methods for assimilating real-world data
into numerical models rely on knowledge of these intervariable relation-
ships. This information allows “balanced” adjustments to the entire model
solution, even when some of the prognostic variables, such as S, and the
parameters are not directly observable quantities. Ensemble filters store all
of the information about the state variable and model parameter inter-
relationships in the form of multiple model solutions (the ensemble), all of
which are possible realizations given past measurements.

In Kalmanfiltering these intervariable relationships are assumed linear (i.e.,
jointly distributed by a multivariate Gaussian). The EAKF inherits this as-
sumption, but the adjustment operates only on the first two moments of the
prior distribution, leaving the higher-order moments unchanged. In the case
of a system in which intervariable relationships are nearly linear (such as the
SIRSmodel), the ensemblefilter canhavehighutility evenwhen it is not strictly
optimal. Ensemble Kalman filtering (like particle filtering) also has the at-
tractive quality that the algorithm can be implemented independently of the
dynamic model. In contrast to variational methods, which require adjoints or
parametric covariance forms, ensemble methods use intervariable relation-
ships that are statistically diagnosed from the ensemble of model solutions.

Generation of Synthetic Truth and Observations. A single combination of initial
conditions and SIRS model parameters was used to generate a synthetic
“truth,”which was then used to validate themodel–data assimilation scheme.
The truth run had parameters L = 3.86 y; D = 2.27 d; R0max = 3.79; and R0min =

0.97. This combination of parameters was chosen because it produced a good
representation of 1972–2002 excess observed pneumonia and influenza
mortality in New York State.

To generate the synthetic truth, the SIRS model was run with the chosen
parameter combination and forced with New York State daily absolute hu-
midity conditions from October 1, 1972 until May 15, 1973. A total model
population of 500,000 was used, and initial susceptibility was set at 250,000
persons with 1 person initially infected. Only one strain of influenza was sim-
ulated. This simulation produced a single outbreak that peaked during January
1973.A time series of thenumberof infectedpeople, I, was formedby sampling
the simulation every 2 d. Synthetic observations were then generated by
adding to this synthetic truth a normally distributed random observational
error with mean 0 and SD, σ0, where the SD is proportional to the percentage
of the infected population (i.e., σ0 = 1; 000× I=N). The resulting time series was
then used for assimilation in the combined SIRS-EAKF framework.

Initialization of the SIRS-EAKF System. The SIRS-EAKF system is initialized with
an ensemble of state vectors, Z0. The values of these state vectors, which
include the SIRS variables S and I and the parameters L, D, R0max, and R0min,
are drawn from a broad distribution of possible variable/parameter combi-
nations. To generate this distribution, 100,000 simulations of the SIRS model
forced with New York State AH were integrated from 1972 to 2002 (31 y).
Each of these 100,000 integrations was performed using a unique set of
parameters. The parameter ranges for this initial random selection were 2 ≤
L ≤ 10, 2 ≤ D ≤ 7, 1.3 ≤ R0max ≤ 4, and 0.8 ≤ R0min ≤ 1.3, as in ref. 3, and
combinations were selected using a Latin hypercube sampling strategy. The
state vectors for a given SIRS-EAKF ensemble were then drawn randomly
from the collection of all possible October 1 combinations.

For this work, each model initialization and seasonal forecast is approached
naively with no information gleaned from the preceding season. In the future,
the initial distribution of parameter values and S might be informed by prior
season outbreaks or knowledge of circulating strains, which might allow
earlier constraint and prediction leads.

ACKNOWLEDGMENTS. Funding was provided by US National Institutes of
Health (NIH) Grant GM100467 (to J.S. and A.K.) and the NIH Models of
Infectious Disease Agent Study program through Cooperative Agreement
1U54GM088558 (to J.S.), as well as by National Institute on Environmental
Health Sciences Center Grant ES009089 (to J.S.) and the Research and Policy
for Infectious Disease Dynamics (RAPIDD) program of the Science and Tech-
nology Directorate, US Department of Homeland Security (to J.S.).

1. WHO (2009) Influenza (Seasonal), Fact Sheet Number 211. Available at http://www.
who.int/mediacentre/factsheets/fs211/en/index.html. Accessed April, 2012.

2. Shaman J, Kohn MA (2009) Absolute humidity modulates influenza survival, trans-
mission and seasonality. Proc Natl Acad Sci USA 106:3243–3248.

3. Shaman J, Pitzer VE, Viboud C, Grenfell BT, Lipsitch M (2010) Absolute humidity and
the seasonal onset of influenza in the continental US. PLoS Biol, e1000316. doi:10.1371/
journal.pbio.1000316.

4. Ross R (1911) Some quantitative studies in epidemiology. Nature 87:466–467.
5. Macdonald G (1952) The analysis of the sporozoite rate. Trop Dis Bull 49:569–586.
6. Anderson RM, May RM (1979) Population biology of infectious diseases: Part I. Nature

280:361–367.
7. May RM, Anderson RM (1979) Population biology of infectious diseases: Part II. Na-

ture 280:455–461.
8. Macdonald G (1952) The analysis of equilibrium in malaria. Trop Dis Bull 49:813–1129.
9. Keeling MJ, Grenfell BT (1997) Disease extinction and community size: Modeling the

persistence of measles. Science 275:65–67.
10. Mills CE, Robins JM, Lipsitch M (2004) Transmissibility of 1918 pandemic influenza.

Nature 432:904–906.
11. Ionides EL, Bretó C, King AA (2006) Inference for nonlinear dynamical systems. Proc

Natl Acad Sci USA 103:18438–18443.
12. He D, Ionides EL, King AA (2010) Plug-and-play inference for disease dynamics:

Measles in large and small populations as a case study. J R Soc Interface 7:271–283.
13. King AA, Ionides EL, Pascual M, Bouma MJ (2008) Inapparent infections and cholera

dynamics. Nature 454:877–881.
14. Bretó C, He D, Ionides EL, King AA (2009) Time series analysis via mechanistic models.

Ann Appl Stat 3:319–348.
15. Krishnamurthy A, Cobb L, Mandel J, Beezley J (2010) Bayesian tracking of emerging

epidemics using ensemble optimal statistical interpolation (EnOSI). Sect Stat Epidem
arXiv:1009.4959.

16. Mandel J, Beezley JD, Cobb L, Krishnamurthy A (2010) Data driven computing by the
morphing fast Fourier transform ensemble Kalman filter in epidemic spread simu-
lations. Proc Comp Sci 1:1215–1223.

17. Rhodes CJ, Hollingsworth TD (2009) Variational data assimilation with epidemic
models. J Theor Biol 258:591–602.

18. Dukic VM, Lopes HF, Polson N (2010) Tracking flu epidemics using Google Flu Trends
data and a state-space SEIR model. J Am Stat Assoc, 10.1080/01621459.2012.713876.

19. Ong JBS, et al. (2010) Real-time epidemic monitoring and forecasting of H1N1-2009
using influenza-like illness from general practice and family doctor clinics in Singa-
pore. PLoS ONE, e10036. doi:10.1371/journal.pone.0010036.

20. Anderson JL (2001) An ensemble adjustment Kalman filter for data assimilation. Mon
Weather Rev 129:2884–2093.

21. Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20:130–141.
22. Strogatz SH (1998) Nonlinear Dynamics and Chaos (Addison-Wesley, Reading, MA).
23. Lighthill J (1986) The recently recognized failure of predictability in Newtonian dy-

namics. Proc R Soc Lond A Math Phys Sci 407:35–50.
24. Ginsberg J, et al. (2009) Influenza epidemics using search engine query data. Nature

457:1012–1014.
25. Google Flu Trends (2012) Available at http://www.google.org/flutrends. Accessed

December, 2011.
26. Arulampalam MS, Maskell S, Gordon N, Clapp T (2002) A tutorial on particle filters for

online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans Signal Process 50:174–188.
27. van Leeuwen PJ (2009) Particle filtering in geophysical systems. Mon Weather Rev

137:4089–4114.
28. Snyder C, Bengtsson T, Bickel P, Anderson J (2008) Obstacles to high-dimensional

particle filtering. Mon Weather Rev 136:4629–4640.
29. Anderson JL, Anderson SL (1999) A Monte Carlo implementation of the nonlinear

filtering problem to produce ensemble assimilations and forecasts. Mon Weather Rev
127:2741–2758.

30. Whitaker JS, Hamill TM (2002) Ensemble data assimilation without perturbed ob-
servations. Mon Weather Rev 130:1913–1924.

31. Krishnamurti TN, et al. (1999) Improved weather and seasonal climate forecasts from
multi-model superensemble. Science 285:1548–1550.

32. Palmer TN, et al. (2005) Representing model uncertainty in weather and climate
prediction. Annu Rev Earth Planet Sci 33:163–193.

33. Anderson JL (2010) A non-Gaussian ensemble filter update for data assimilation.Mon
Weather Rev 138:4186–4198.

34. Lei J, Bickel P, Snyder C (2010) Comparison of ensemble Kalman filters under non-
Gaussianity. Mon Weather Rev 138:1293–1306.

6 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1208772109 Shaman and Karspeck

http://www.who.int/mediacentre/factsheets/fs211/en/index.html
http://www.who.int/mediacentre/factsheets/fs211/en/index.html
http://www.google.org/flutrends
www.pnas.org/cgi/doi/10.1073/pnas.1208772109

